Object oriented inference methods

  1. Bolón Rodríguez, Diego
Dirixida por:
  1. Rosa M. Crujeiras Casais Director
  2. Alberto Rodríguez Casal Director

Universidade de defensa: Universidade de Santiago de Compostela

Fecha de defensa: 23 de maio de 2024

Tribunal:
  1. María Dolores Martínez Miranda Presidente/a
  2. Beatriz Pateiro López Secretaria
  3. Yvik Swan Vogal

Tipo: Tese

Minerva. Repositorio Institucional de la Universidad de Santiago de Compostela: lock_openAcceso aberto Externo

Resumo

Object oriented data analysis (OODA) can be defined as the statistical analysis of complex objects. This term comprises any situation where classical inferential techniques are not directly applicable, either because the population of study is supported on a manifold different from the Euclidean space, or because its characteristic of interest has an overly complex structure that usual statistic techniques cannot manage. This doctoral thesis addresses three problems included in the OODA framework: assessing the number of modes of a circular variable, estimating high density regions for data on manifolds, and developing locally optimal inference techniques for noisy directional data.