Familias de leyes de álgebras de Lie nilpotentes
- Jiménez Merchán, Antonio
- José Ramón Gómez Martín Director
Universidade de defensa: Universidad de Sevilla
Ano de defensa: 1995
- Francisco Javier Echarte Reula Presidente/a
- Gerardo Valeiras Reina Secretario/a
- Michel Goze Vogal
- Felipe Mateos Mateos Vogal
- Juan Francisco Torres Lopera Vogal
Tipo: Tese
Resumo
SE PRESENTAN EN ESTA MEMORIA RESULTADOS QUE PUEDEN SER ENMARCADOS DENTRO DE LOS PROBLEMAS DE CLASIFICACION DE ALGEBRAS DE LIE, EN LA PRIMERA PARTE SE DA UN ALGORITMO QUE GENERA, EN TIEMPO POLINOMIAL, FAMILIAS DE LEYES DE ALGEBRAS DE LIE FILIFORMES DE DIMENSION N. SE OBTIENE, DE LA APLICACION DEL ALGORITMO A TRAVES DE SU IMPLEMENTACION EN UN LENGUAJE FORMAL, UNA PARAMETRIZACION DEL CONJUNTO ALGEBRAICO AFIN FORMADO POR LA FAMILIA DE LEYES FILIFORMES DE DIMENSION 11; POSTERIORMENTE, SE PRESENTA TAMBIEN UNA PARAMETRIZACION DE LA FAMILIA DE LEYES FILIFORMES DE DIMENSION 12. CUANDO SE CONSIDERA LA FILTRACION NATURAL QUE PRODUCE LA SUCESION CENTRAL DESCENDENTE DE UN ALGEBRA DE LIE NILPOTENTE, SE OBTIENE UN ALGEBRA GRADUADA FINITA QUE, EN CIERTO MODO, CONSTITUYE EL "ESQUELETO" DEL ALGEBRA QUE SE CONSIDERA. ESTAS ALGEBRAS GRADUADAS ESTAN DETERMINADAS EN EL CASO FILIFORME. LAS ALGEBRAS CASIFILIFORMES SON LAS QUE TIENEN UNA SUCESION CARACTERISTICA INMEDIATAMENTE INFERIOR A LAS FILIFORMES. EN LA SEGUNDA PARTE DE ESTA MEMORIA SE OBTIENE LA CLASIFICACION DE LAS ALGEBRAS GRADUADAS CASIFILIFORMES EN CUALQUIER DIMENSION FINITA. LOS RESULTADOS DAN UNA EXPLICACION AL DIFERENTE GRADO DE DIFICULTAD EN LA CLASIFICACION DE LAS ALGEBRAS DE LIE FILIFORMES Y CASIFILIFORMES, EN TERMINOS DEL NUMERO DE ALGEBRAS GRADUADAS NO ISOMORFAS QUE SE OBTIENEN.