Familias de leyes de álgebras de Lie nilpotentes

  1. Jiménez Merchán, Antonio
Supervised by:
  1. José Ramón Gómez Martín Director

Defence university: Universidad de Sevilla

Year of defence: 1995

Committee:
  1. Francisco Javier Echarte Reula Chair
  2. Gerardo Valeiras Reina Secretary
  3. Michel Goze Committee member
  4. Felipe Mateos Mateos Committee member
  5. Juan Francisco Torres Lopera Committee member

Type: Thesis

Teseo: 49042 DIALNET lock_openIdus editor

Abstract

SE PRESENTAN EN ESTA MEMORIA RESULTADOS QUE PUEDEN SER ENMARCADOS DENTRO DE LOS PROBLEMAS DE CLASIFICACION DE ALGEBRAS DE LIE, EN LA PRIMERA PARTE SE DA UN ALGORITMO QUE GENERA, EN TIEMPO POLINOMIAL, FAMILIAS DE LEYES DE ALGEBRAS DE LIE FILIFORMES DE DIMENSION N. SE OBTIENE, DE LA APLICACION DEL ALGORITMO A TRAVES DE SU IMPLEMENTACION EN UN LENGUAJE FORMAL, UNA PARAMETRIZACION DEL CONJUNTO ALGEBRAICO AFIN FORMADO POR LA FAMILIA DE LEYES FILIFORMES DE DIMENSION 11; POSTERIORMENTE, SE PRESENTA TAMBIEN UNA PARAMETRIZACION DE LA FAMILIA DE LEYES FILIFORMES DE DIMENSION 12. CUANDO SE CONSIDERA LA FILTRACION NATURAL QUE PRODUCE LA SUCESION CENTRAL DESCENDENTE DE UN ALGEBRA DE LIE NILPOTENTE, SE OBTIENE UN ALGEBRA GRADUADA FINITA QUE, EN CIERTO MODO, CONSTITUYE EL "ESQUELETO" DEL ALGEBRA QUE SE CONSIDERA. ESTAS ALGEBRAS GRADUADAS ESTAN DETERMINADAS EN EL CASO FILIFORME. LAS ALGEBRAS CASIFILIFORMES SON LAS QUE TIENEN UNA SUCESION CARACTERISTICA INMEDIATAMENTE INFERIOR A LAS FILIFORMES. EN LA SEGUNDA PARTE DE ESTA MEMORIA SE OBTIENE LA CLASIFICACION DE LAS ALGEBRAS GRADUADAS CASIFILIFORMES EN CUALQUIER DIMENSION FINITA. LOS RESULTADOS DAN UNA EXPLICACION AL DIFERENTE GRADO DE DIFICULTAD EN LA CLASIFICACION DE LAS ALGEBRAS DE LIE FILIFORMES Y CASIFILIFORMES, EN TERMINOS DEL NUMERO DE ALGEBRAS GRADUADAS NO ISOMORFAS QUE SE OBTIENEN.