Estructuras casi contacto y homogéneas casi contacto
- González Dávila, José Carmelo
- Domingo Chinea Miranda Director
Universidade de defensa: Universidad de La Laguna
Ano de defensa: 1987
- Nacere Hayek Calil Presidente/a
- José Luis Cabrerizo Jaraiz Secretario/a
- Xosé Manuel Carballés Vázquez Secretario
- Luis Angel Cordero Rego Vogal
- Joan Girbau Vogal
Tipo: Tese
Resumo
Se obtiene una clasificación de las variedades casi contacto métricas (a través de las simetrías de la derivada covariante de la 2-forma fundamental de estas variedades) en la cual quedan incluidas las clases definidas hasta este momento y se incluyen nuevos ejemplos de dichas clases. Una segunda parte se dedica al desarrollo de la teoría de variedades homogéneas casi-contacto, obteniendo el teorema de Ambrose-Singer para este tipo de variedades. Se obtienen ejemplos de estructuras homogéneas sobre los grupos de Heisenberg generalizados H(p,1) H(1,0)