LUCIA
LOPEZ SOMOZA
Profesora ayudante doctora
ALBERTO
CABADA FERNANDEZ
Catedrático de universidad
Publicaciones en las que colabora con ALBERTO CABADA FERNANDEZ (15)
2024
-
Characterization of the Constant Sign of a Class of Periodic and Neumann Green’s Functions via Spectral Theory
Trends in Mathematics (Springer Science and Business Media Deutschland GmbH), pp. 45-54
-
Characterization of the spectra of the Hill’s equation coupled to different boundary value conditions and application to nonlinear boundary problems
Filomat, Vol. 38, Núm. 1, pp. 195-215
-
Existence results for a fourth order problem with functional perturbed clamped beam boundary conditions
Mathematica Slovaca, Vol. 74, Núm. 4, pp. 895-916
2023
-
Existence of Positive Solutions of Nonlinear Second Order Dirichlet Problems Perturbed by Integral Boundary Conditions
Trends in Mathematics (Springer Science and Business Media Deutschland GmbH), pp. 183-208
-
Existence of solutions of nonlinear systems subject to arbitrary linear non-local boundary conditions
Journal of Fixed Point Theory and Applications, Vol. 25, Núm. 4
2022
-
Constant-Sign Green’s Function of a Second-Order Perturbed Periodic Problem
Axioms, Vol. 11, Núm. 3
-
Spectral characterization of the constant sign Green's functions for periodic and Neumann boundary value problems of even order
Differential Equations & Applications, Vol. 14, Núm. 2, pp. 335-347
2021
2019
-
Lower and upper solutions for even order boundary value problems
Mathematics, Vol. 7, Núm. 10
-
Relationship Between Green’s Functions for Even Order Linear Boundary Value Problems
Springer Proceedings in Mathematics and Statistics
2018
-
Existence of solutions of integral equations with asymptotic conditions
Nonlinear Analysis: Real World Applications, Vol. 42, pp. 140-159
-
Maximum principles for the Hill's equation
Academic Press USA
2017
-
Maximum Principles for the Hill's Equation
Elsevier Inc., pp. 1-252
-
Positive solutions for second-order boundary-value problems with sign changing green’s functions
Electronic Journal of Differential Equations, Vol. 2017
2016
-
Green's functions and spectral theory for the Hill's equation
Applied Mathematics and Computation, Vol. 286, pp. 88-105