Hydrogen Bond Binding of Water to Two Cholic Acid Residues
- Vázquez-Tato, María Pilar 2
- Seijas, Julio A. 2
- Meijide, Francisco 1
- de Frutos, Santiago 1
- Tato, José Vázquez 1
- 1 Departamento de Química Física, Facultade de Ciencias, Universidade de Santiago de Compostela, Campus Terra, 27080 Lugo, Spain
- 2 Departamento de Química Orgánica, Facultade de Ciencias, Universidade de Santiago de Compostela, Campus Terra, 27080 Lugo, Spain
Editorial: MDPI
ISSN: 2673-4583
Año de publicación: 2022
Páginas: 95
Tipo: Aportación congreso
Resumen
Cholic acid is a trihydroxy bile acid with three hydroxy groups at C-3, C-7 and C-12 carbon atoms; two methyl groups at C-10 and C-13 carbon atoms of the steroid nucleus; and a carboxylic group at C24 of the side alkyl chain. The distance between the oxygen atoms linked to C-7 and C-12 (~4.5 Å) perfectly matches with the edge distance between oxygen atoms in ice. This leads to the design of a cholic acid dimer in which one water molecule is encapsulated between two cholic residues, resembling an ice-like structure. The water molecule participates in four hydrogen bonds, the water simultaneously being acceptor from the O12-H hydroxy groups (two bonds with lengths of 2.177 Å and 2.114 Å) and the donor towards the O-7-H groups (two bonds with lengths of 1.866 Å and 1.920 Å). Regarding this communication, we present the application of the “atoms in molecules” (AIM) theory to the tetrahedral structure. The analysis of the calculated electron density, ρ, is performed using its gradient vector, ∇ρ, and the Laplacian, ∇2ρ. The calculation of the complexation energy used correction of the basis set superposition error (BSSE) and the counterpoise method. As expected, four critical (3,−1) points located in the H…O bond paths were identified. All calculated parameters are in concordance with those of similar systems and obey the proposed criteria for hydrogen bonds. The total energy for the interaction is −12.67 kcal/mol and is analysed using proposed energy/electron density equations.
Referencias bibliográficas
- Meijide, F., de Frutos, S., Soto, V.H., Jover, A., Seijas, J.A., Vázquez-Tato, M.P., Fraga, F., and Vázquez Tato, J. (2018). A standard structure for bile acids and derivatives. Crystals, 8.
- Atwood, J.L., Davies, J.E.D., and MacNicol, D.D. (1984). Inclusion Compounds of Deoxycholic Acid, Academic Press.
- MacNicol, (1996), Comprehensive Supramolecular Chemistry, Volume 6, pp. 147
- Campanelli, (1989), J. Incl. Phenom. Macrocyclic. Chem., 7, pp. 391, 10.1007/BF01079774
- Sada, (2001), J. Am. Chem. Soc., 123, pp. 4386, 10.1021/ja0038528
- Sugahara, (1999), Chem. Commun., 3, pp. 293, 10.1039/a808900k
- Sugahara, (2001), Mol. Cryst. Liquid Cryst., 356, pp. 155, 10.1080/10587250108023696
- Hishikawa, (1998), Chem. Lett., 27, pp. 1289, 10.1246/cl.1998.1289
- Miyata, (2007), Molecules, 12, pp. 1973, 10.3390/12081973
- Miragaya, (2010), Crystal Growth Des., 10, pp. 1124, 10.1021/cg9009064
- Grabowski, S.J. (2020). Understanding Hydrogen Bonds: Theoretical and Experimental Views, Royal Society of Chemistry. Chapter 1.
- Popelier, (2000), Coord. Chem. Rev., 197, pp. 169, 10.1016/S0010-8545(99)00189-7
- Bader, (1985), Acc. Chem. Res., 18, pp. 9, 10.1021/ar00109a003
- Soto, (2012), Steroids, 77, pp. 1228, 10.1016/j.steroids.2012.07.003
- Fletcher, N.H. (1970). The Chemical Physics of Ice, Cambridge University Press.
- Bergmann, (2007), J. Chem. Phys., 127, pp. 174504, 10.1063/1.2784123
- Steiner, (2002), Angew. Chem. Int. Ed., 41, pp. 48, 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
- Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., and Nakatsuji, H. (2016). Gaussian 16 RC, Gaussian, Inc.
- Lu, (2012), J. Comput. Chem., 33, pp. 580, 10.1002/jcc.22885
- Popelier, (1998), J. Phys. Chem. A, 102, pp. 1873, 10.1021/jp9805048
- Carroll, (1988), Mol. Phys., 63, pp. 387, 10.1080/00268978800100281
- Koch, (1995), J. Phys. Chem. A, 99, pp. 9747, 10.1021/j100024a016
- Bader, (1987), J. Am. Chem. Soc., 109, pp. 7968, 10.1021/ja00260a006
- Alkorta, (1998), Struct. Chem., 9, pp. 243, 10.1023/A:1022424228462
- Tang, (2006), Eur. Phys. J. D, 37, pp. 217, 10.1140/epjd/e2005-00317-0
- Mukhopadhyay, (2015), Chem. Phys. Lett., 633, pp. 13, 10.1016/j.cplett.2015.04.016
- Mukhopadhyay, (2018), Chem. Phys. Lett., 700, pp. 163, 10.1016/j.cplett.2018.03.057
- Dyke, (1974), J. Chem. Phys., 60, pp. 2929, 10.1063/1.1681463
- Dyke, (1977), J. Chem. Phys., 66, pp. 498, 10.1063/1.433969
- Odutola, (1980), J. Chem. Phys., 72, pp. 5062, 10.1063/1.439795
- Grabowski, (2000), J. Phys. Chem. A, 104, pp. 5551, 10.1021/jp993984r
- Grabowski, (2001), J. Phys. Chem. A, 105, pp. 10739, 10.1021/jp011819h
- Emamian, (2019), J. Comput. Chem., 40, pp. 2868, 10.1002/jcc.26068
- Gu, (1999), J. Am. Chem. Soc., 121, pp. 9411, 10.1021/ja991795g
- Kumar, (2016), J. Chem. Sci., 128, pp. 1527, 10.1007/s12039-016-1172-3
- Isaev, (2018), Comp. Theor. Chem., 1142, pp. 28, 10.1016/j.comptc.2018.08.021
- Rowland, (1996), J. Phys. Chem., 100, pp. 7384, 10.1021/jp953141+
- Jeffrey, G.J. (1997). An Introduction to Hydrogen Bonding, Oxford University Press.
- Ruscic, (2013), J. Phys. Chem. A, 117, pp. 11940, 10.1021/jp403197t
- Feyereisen, (1996), J. Phys. Chem., 100, pp. 2993, 10.1021/jp952860l
- Mollner, (2011), J. Chem. Phys., 134, pp. 211101, 10.1063/1.3598339
- Shank, (2009), J. Chem. Phys., 130, pp. 144314, 10.1063/1.3112403
- Moin, (2011), J. Comput. Chem., 32, pp. 886, 10.1002/jcc.21670
- Boyd, (1986), Chem. Phys. Lett., 129, pp. 62, 10.1016/0009-2614(86)80169-5
- Rozenberg, (2014), RSC Adv., 4, pp. 26928, 10.1039/C4RA03889D
- Ghanty, (2000), J. Am. Chem. Soc., 122, pp. 1210, 10.1021/ja9937019