Activities for developing Epistemic knowledge and Critical Thinking through Scientific Inquiry in the school laboratory
- González Rodríguez, Leticia 1
- Crujeiras Pérez, Beatriz 2
- 1 Universidad de Santiago de Compostela, España.
-
2
Universidade de Santiago de Compostela
info
ISSN: 1697-011X
Ano de publicación: 2024
Volume: 21
Número: 3
Páxinas: 3201
Tipo: Artigo
Outras publicacións en: Revista Eureka sobre enseñanza y divulgación de las ciencias
Resumo
This article presents the design of a teaching sequence on the structure of matter and chemical reactivity in the laboratory following the approach of teaching science through scientific practices, in particular through scientific inquiry. Special emphasis is placed on the use of epistemic knowledge involved in this scientific practice to ensure that students learn Chemistry in a meaningful way that is consistent with how scientific knowledge is developed, and on the development of critical thinking. The sequence is designed to be implemented in the subject Physics and Chemistry for 8th graders (13-14 years old) and for students working in small groups. The implementation of this sequence in two classes suggests that using epistemic knowledge is complex for students and it is appreciated only when it is explicitly promoted through questions inserted in the handouts of the activities or prompted by the teacher through her interventions.
Referencias bibliográficas
- Barak, M., Ginzburg, T. y Erduran, S. (2024). Nature of Engineering A Cognitive and Epistemic Account with Implications for Engineering Education. Science & Education, 33, 679-697.https://doi.org/10.1007/s11191-022-00402-7
- Banchi, H. y Bell, R. (2008). The Many Levels of Inquiry. Science & Children, 46, 26-29.
- Berland, L. K., Schwarz, C., Krist, C., Kenyon, L., Lo, A. S. y Reiser, B. J. (2016). Epistemologies in practice: Making scientific practices meaningful for students. Journal of Research in Science Teaching, 53(7), 1082-1112. http://dx.doi.org/10.1002/tea.21257
- Blanco López, A., España Ramos, E., y Franco Mariscal, A. J. (2017). Estrategias didácticas para el desarrollo del pensamiento crítico en el aula de ciencias. Ápice: revista de Educación Científica, 1(1), 107-115. http://dx.doi.org/10.17979/arec.2017.1.1.2004
- Casas-Quiroga, L. y Crujeiras-Pérez, B. (2024). Epistemic knowledge considered by secondary school students involved in the examination of a real alimentary emergency. Journal of Biological Education, 58(1),16-28. https://doi.org/10.1080/00219266.2021.2012230
- Casas-Quiroga, L. y Crujeiras-Pérez, B. (2022). Trabajando la respuesta ante enfermedades de origen alimentario a través del juego de rol. Enseñanza de las Ciencias, 40(1), 221-241. https://doi.org/10.5565/rev/ensciencias.3327
- Chen,Y., Brand, H. y Park, S. (2016). Examining Elementary Students’ Development of Oral and Written Argumentation Practices Through Argument-Based Inquiry. Science and Education, 25, 277-320. http://dx.doi.org/10.1007/s11191-016-9811-0
- Crujeiras-Pérez, B. y Brocos, P. (2021). Pre-service teachers' use of epistemic criteria in the assessment of scientific procedures for identifying microplastics in beach sand. Chemistry Education Research and Practice, 22, 237-246. https://doi.org/10.1039/D0RP00176G
- Crujeiras-Pérez, B. y Díaz-Moreno, N. (2022). Promoting Pre-Service Primary Teachers’ Development of NOSI Through Specific Immersion and Reflection. EURASIA Journal of Mathematics, Science and Technology Education, 18(3). https://doi.org/10.29333/ejmste/11795
- Cunningham, C. M. y Kelly, G. J. (2017). Epistemic practices of engineering for Education. Science Education, 101, 486-505. http://dx.doi.org/10.1002/sce.21271
- Duschl, R. A. (1990). Restructuring Science Education: The importance of theories and their development. Teachers College Press.
- Duschl, R. A. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of Research in Education, 32, 268–291. http://dx.doi.org/10.3102/0091732X07309371
- Elby, A., Macrander, C. y Hammer, D. (2016). Epistemic cognition in science. En J. Green,W. A. Sandoval e I. Braaten. Handbook of Epistemic Cognition (pp.113-127). Routledge.
- English, L. D. (2020). Facilitating STEM integration through design. En J. Anderson y Y. Li (Eds.). Integrated approaches to STEM education: an international perspective. (pp. 45-66). Springer.
- Facione, P. A. (1990). Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment & Instruction: The Delphi Report. California Academic Press.
- García Carmona, A. (2022). La comprensión de aspectos epistémicos de la naturaleza de la ciencia en el nuevo currículo de Educación Secundaria Obligatoria, tras la LOMLOE. Revista Española de Pedagogía, 283, 433-450.
- Georgia Department of Education (2016). K-12 Georgia Standards of Excellence (GSE) for Science.
- González Rodríguez, L. y Crujeiras-Pérez, B. (2016). Aprendizaje de las reacciones químicas a través de actividades de indagación en el laboratorio sobre cuestiones de la vida cotidiana. Enseñanza de las Ciencias, 34(3),143-160. https://doi.org/10.5565/rev/ensciencias.2018
- Jiménez-Aleixandre, M. P. y Puig, B. (2022). Educating critical citizens to face post- truth: the time is now. En B. Puig y M. P. Jiménez-Aleixandre (Eds.). Critical thinking in Biology and Environmental Education. Facing challenges in a post- truth world. Springer.
- Kangas, K. y Seitamaa-Hakkarainen, P. (2018). Collaborative design work in technology education. En M. J. de Vries (Ed.), Handbook of technology education (pp. 597–609). Springer.
- Kelly, G. J. (2008). Inquiry, activity and epistemic practice. En R. A. Duschl y R. E. Grandy (Eds.). Teaching Scientific Inquiry. Sense Publishers, pp.99-117. http://dx.doi.org/10.1163/9789460911453_009
- Kelly, G. J., McDonald, S. y Wickman, P-O. (2012). Science Learning and Epistemology. En B. J. Fraser, K. G. Tobin, y C. J. McRobbie (Eds.). Second International Handbook of Science Education (Volume 1, pp. 281-291). Springer. http://dx.doi.org/10.1007/978-1-4020-9041-7_20
- Kite, V., Park, S., McCance, K. y Seung, E. (2021). Secondary Science Teachers’ Understandings of the Epistemic Nature of Science Practices. Journal of Science Teacher Education, 32, 243-264.
- National Research Council (NRC) (2013). Next generation science standards: For states, by states. The National Academies Press.
- National Research Council (NRC) (2012). A framework for K12 Science Education: practices, crosscutting concepts and core ideas. National Academy Press.
- National Research Council (NRC) (2000). Inquiry and the National Science Education Standards. Washington, DC: National Academies Press.
- Norris, S. P. y Ennis, R. H. (1989). Evaluating critical thinking. Critical Thinking Press & Software.
- Organisation for Economic and Cooperative Development (OECD) (2016). PISA 2015 Assessment and Analytical Framework: Science, Reading, Mathematic and Financial Literacy. OECD Publishing.
- Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria, BOE, núm 76, de 30 de marzo de 2022.
- Ryu, S. y Sandoval, W. A. (2012). Improvements to Elementary Children’s Epistemic Understanding From Sustained Argumentation. Science Education, 96, 488-526. http://dx.doi.org/10.1002/sce.21006
- Sandoval, W., Bell, P., Coleman, E., Enyedy, N. y Suthers, D. (2000). Designing Knowledge Representations for Learning Epistemic Practices of Science, Comunicación presentada en el congreso Annual Meeting of the American Educational Research Association, New Orleans, 25 de abril.
- Sandoval, W. A. (2005). Understanding students’ practical epistemologies and their influence on learning through inquiry. Science Education, 89, 634–656. http://dx.doi.org/10.1002/sce.20065
- Sandoval, W. A. (2014). Science education’s need for a theory of epistemological development, Science Education, 98(3), 383–387. http://dx.doi.org/10.1002/sce.21107
- Sandoval, W. A. y Reiser, B. J. (2004), Explanation-driven inquiry: integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88, 345-372. http://dx.doi.org/10.1002/sce.10130