Blue Carbon Stock in Zostera marina Meadows in the Ría de Ferrol (NW Iberian Peninsula)
- María Del Carmen De La Cerda Marín 1
- Guillermo Díaz-Agras 2
- Ramiro Rodríguez Tato 2
- María Candás Romero 2
- Marcos Pérez Señarís 2
- Andrés de Solaun Eimil 2
- Xosé Luis Otero 3
-
1
Universidade de Santiago de Compostela
info
- 2 REBUSC, Rede de Estación Biolóxicas da Universidade de Santiago de Compostela, Estación de Bioloxía Mariña da Graña, Ferrol,
- 3 CRETUS, Departamento de Edafoloxía e Química Agrícola, Facultade de Bioloxía, Universidade de Santiago de Compostela. REBUSC, Rede de Estación Biolóxicas da Universidade de Santiago de Compostela, Estación de Bioloxía Mariña da Graña, Ferrol,
ISSN: 2253-6574
Ano de publicación: 2023
Volume: 13
Número: 1
Tipo: Artigo
Outras publicacións en: Spanish Journal of Soil Science: SJSS
Resumo
The increase in greenhouse gases (GHG) has been constant since the Industrial Revolution. For this reason, different international organizations have devoted special attention to GHG sinks such as terrestrial soils and ecosystems. However, the initially estimated balances did not include the carbon stock associated with ocean waters, coastal soils and sediments, known as blue carbon. Currently, blue carbon sinks are the subject of numerous studies due to the limited information available, especially on the Atlantic coast of the Iberian Peninsula. We studied the organic C stock present in soils and in Zostera marina biomass in the two main meadows in the Ría de Ferrol (O Baño and Castelo de San Felipe). The carbon stock associated with biomass was 0.37 Mg C ha−1, with 0.18 Mg C ha−1 corresponding to the epigeal portion and 0.19 Mg C ha−1 to the hypogeal portion. Soil carbon stock was much higher: 4.11 Mg C ha−1 at a depth of 5 cm and 82.14 Mg C ha−1 at a depth of 1 m. Together with carbon values in biomass, a stock of 82.5 Mg C ha−1 was obtained for the whole Ría de Ferrol. Z. marina accounted for 8.25% of total C in the Ría de Ferrol. These values were higher than those found in other regions. Isotope ratios (δ13C, δ15N) and C/N ratios indicated that the organic C stock in the O Baño soil may receive important organic matter inputs of terrestrial origin, while in San Felipe, it seems to have a marine origin.
Referencias bibliográficas
- Bertelli, C. M., Bull, J. C., Cullen-Unsworth, L. C., and Unsworth, R. K. (2021). Unravelling the Spatial and Temporal Plasticity of Eelgrass Meadows. Front. Plant Sci. 12, 664523. doi:10.3389/fpls.2021.664523
- Cacabelos, E., Quintas, P., Troncoso, J., Bárbara, I., García-Redondo, V., Cremades, J., et al. (2015). “Las praderas marinas de España: una visión general. Cuadro temático 1. La biodiversidad de las praderas españolas, Atlántico norte,” in Atlas de las praderas marinas de España (IEO/IEL/UICN, Murcia-Alicante-Málaga), 87–91.
- Claes, J., Hopman, D., Jaeger, G., and Rogers, M. (2022). Blue Carbon: The Potential of Coastal and Oceanic Climate Action. Hong Kong, China: McKinsey & Company.
- Duarte, C. M., and Chiscano, C. L. (1999). Seagrass Biomass and Production: a Reassessment. Aquat. Bot. 65, 159–174. doi:10.1016/S0304-3770(99)00038-8
- Duarte, C. M., Sintes, T., and Marbà, N. (2013). Assessing the CO 2 Capture Potential of Seagrass Restoration Projects. J. Appl. Ecol. 50 (6), 1341–1349. doi:10.1111/1365-2664.12155
- Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M. A., et al. (2012). Seagrass Ecosystems as a Globally Significant Carbon Stock. Nat. Geosci. 5 (7), 505–509. doi:10.1038/ngeo1477
- Fourqurean, J. W., Moore, T. O., Fry, B., and Hollibaugh, J. T. (1997). Spatial and Temporal Variation in C: N: P Ratios, δ15N, and δ13C of Eelgrass Zostera Marina as Indicators of Ecosystem Processes, Tomales Bay, California, USA. Mar. Ecol. Prog. Ser. 157, 147–157. doi:10.3354/meps157147
- García Moya, A. (2014). Estudio de origen y variación temporal de la materia óraganica en los sedimentos de Refugio de Fauna" Laguna Guanaroca", Cienfuegos, Cuba. Doctoral dissertation (Las Villas: Universidad Central" Marta Abreu").
- García-Redondo, V., Bárbara, I., and Díaz-Tapia, P. (2019). Zostera Marina Meadows in the Northwestern Spain: Distribution, Characteristics and Anthropogenic Pressures. Biodivers. conservation 28 (7), 1743–1757. doi:10.1007/s10531-019-01753-4
- Herr, D., and Landis, E. (2016). “Coastal Blue Carbon Ecosystems,” in Opportunities for Nationally Determined Contributions. Policy Brief (Gland, Switzerland: IUCN).
- Howard, J., Hoyt, S., Isensee, K., Pidgeon, E., and Telszewski, M. (2014). “Coastal Blue Carbon Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrasses Meadows,” in Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature (Arlington, Virginia, USA: UNESCO).
- IPCC (2021). The Physical Science Basis. Contribution of Working. Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate. Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
- Kennedy, H., Beggins, J., Duarte, C. M., Fourqurean, J. W., Holmer, M., Marbà, N., et al. (2010). Seagrass Sediments as a Global Carbon Sink: Isotopic Constraints. Glob. Biogeochem. cycles 24 (4). doi:10.1029/2010gb003848
- Kim, S. H., Suonan, Z., Qin, L. Z., Kim, H., Park, J. I., Kim, Y. K., et al. (2022). Variability in Blue Carbon Storage Related to Biogeochemical Factors in Seagrass Meadows off the Coast of the Korean Peninsula. Sci. Total Environ. 813, 152680. doi:10.1016/j.scitotenv.2021.152680
- Kuo, J., and Den Hartog, C. (2001). “Seagrass Taxonomy and Identification Key,” in Global Seagrass Research Methods. Editors F. T. Short, and R. G. Coles (Amsterdam: Elsevier Science BV), 33, 31–58. doi:10.1016/B978-044450891-1/50003-7
- Lamb, A. L., Wilson, G. P., and Leng, M. J. (2006). A Review of Coastal Palaeoclimate and Relative Sea-Level Reconstructions Using δ13C and C/N Ratios in Organic Material. Earth-Science Rev. 75 (1-4), 29–57. doi:10.1016/j.earscirev.2005.10.003
- Lavery, P. S., Mateo, M. Á., Serrano, O., and Rozaimi, M. (2013). Variability in the Carbon Storage of Seagrass Habitats and its Implications for Global Estimates of Blue Carbon Ecosystem Service. PloS one 8 (9), e73748. doi:10.1371/journal.pone.0073748
- Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., et al. (2011). A Blueprint for Blue Carbon: toward an Improved Understanding of the Role of Vegetated Coastal Habitats in Sequestering CO2. Front. Ecol. Environ. 9 (10), 552–560. doi:10.1890/110004
- Míguez, B. M. (2003). Descripción dinámica de la circulación en dos Rías Baixas: Vigo y Pontevedra. Doctoral dissertation, PhD Thesis (Vigo: University of Vigo).
- NOAA (2021). EarthDay: Invest in Our Changing Planet Now to Secure a More Livable Future. Available from: https://gml.noaa.gov/ccgg/trends/weekly.html.
- Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., et al. (2012). Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS One 7 (9), e43542. doi:10.1371/journal.pone.0043542
- Prentice, C., Poppe, K. L., Lutz, M., Murray, E., Stephens, T. A., Spooner, A., et al. (2020). A Synthesis of Blue Carbon Stocks, Sources, and Accumulation Rates in Eelgrass (Zostera Marina) Meadows in the Northeast Pacific. Glob. Biogeochem. Cycles 34 (2), e2019GB006345. doi:10.1029/2019gb006345
- Röhr, M. E., Boström, C., Canal-Vergés, P., and Holmer, M. (2016). Blue Carbon Stocks in Baltic Sea Eelgrass (Zostera marina) Meadows. Biogeosciences 13 (22), 6139–6153. doi:10.5194/bg-13-6139-2016
- Röhr, M. E., Holmer, M., Baum, J. K., Björk, M., Boyer, K., Chin, D., et al. (2018). Blue Carbon Storage Capacity of Temperate Eelgrass (Zostera Marina) Meadows. Glob. Biogeochem. Cycles 32 (10), 1457–1475. doi:10.1029/2018gb005941
- Samper-Villarreal, J., Lovelock, C. E., Saunders, M. I., Roelfsema, C., and Mumby, P. J. (2016). Organic Carbon in Seagrass Sediments Is Influenced by Seagrass Canopy Complexity, Turbidity, Wave Height, and Water Depth. Limnol. Oceanogr. 61 (3), 938–952. doi:10.1002/lno.10262
- Short, F. T., and Neckles, H. A. (1999). The Effects of Global Climate Change on Seagrasses. Aquat. Bot. 63 (3-4), 169–196. doi:10.1016/s0304-3770(98)00117-x