Macroalgae as a sustainable biostimulant for crop production according to techno-economic and environmental criteria
ISSN: 2352-5509
Ano de publicación: 2024
Volume: 48
Páxinas: 169-180
Tipo: Artigo
Outras publicacións en: Sustainable Production and Consumption
Resumo
One of the main hotspots in the agricultural sector is related to the extensive use of fertilizers and pesticides, which leads to direct environmental impacts, such as eutrophication, and indirect ones, such as the energy demand associated with their production. Faced with these limitations, the use of biostimulants has emerged as a suitable and effective strategy to improve crop productivity, avoid the use of chemicals and promote a more sustainable agricultural sector. This manuscript addresses the valorization of macroalgae for the production of biostimulants for crop cultivation according to three possible scenarios: steam autoclaving (SAE), boiling (BE), and supercritical fluid extraction (SFE). In order to evaluate their ecological potential, both techno-economic and environmental assessments have been developed, following the life cycle assessment methodology. The results obtained show that, from an environmental point of view, the use of energy resources and CO2, in the case of the SFE scenario, makes a significant contribution to the environmental profile. The optimization of the process could contribute to a reduction of the impact in the range of 12 %–41 %, which increases the sustainable potential of the biostimulant production. On the other hand, regarding the economic study, all scenarios are considered economically viable, since a minimum selling price (MSP) similar to the market average is obtained. However, by improving the process yield and the consumption of energy resources and materials, the MSP could be reduced by 19.81 %. In addition, this manuscript also shows that the application of this biostimulant in wheat production contributes to a significant reduction in environmental impact compared to a conventional crop stimulant.
Referencias bibliográficas
- Arias, (2022), ACS Sustain. Chem. Eng., 10, pp. 11257, 10.1021/acssuschemeng.2c03058
- Arioli, (2023), J. Appl. Phycol.
- Ayala, (2023), Algal Res., 71, 10.1016/j.algal.2023.103036
- Cebrián-Lloret, (2022), Algal Res., 61, 10.1016/j.algal.2021.102576
- Chanthini, (2022), Agriculture, 13, pp. 6, 10.3390/agriculture13010006
- Chanthini, (2023), Agriculture (Switzerland), 13, pp. 6
- Dhankhar, (2023), Materials Today: Proceedings
- Dias, (2023), Sci. Total Environ., 884
- Du Jardin, (2015), Sci. Hortic., 196, pp. 3, 10.1016/j.scienta.2015.09.021
- EC, (2019)
- FAO, (2018)
- Finkbeiner, (2006), Int. J. Life Cycle Assess., 11, pp. 80, 10.1065/lca2006.02.002
- Fitriyah, (2022), J Trop Biodivers Biotechnol, 7, 10.22146/jtbb.69178
- Ghosh, (2015), Algal Res., 12, 10.1016/j.algal.2015.10.015
- Godlewska, (2016), Biomed. Res. Int., 2016, 10.1155/2016/5973760
- Han, (2022), Sci. Rep., 12
- Kapoore, (2021), Biotechnol. Adv., 49, 10.1016/j.biotechadv.2021.107754
- Kothari, (2023), Physiol. Rev., 22, pp. 935
- Laribi, (2023), S. Afr. J. Bot., 158, 10.1016/j.sajb.2023.04.049
- Laurent, (2020), J. Agric. Sci., 158, pp. 279, 10.1017/S0021859620000660
- Layek, (2018), J. Appl. Phycol., 30, pp. 547, 10.1007/s10811-017-1225-0
- Mandal, (2023), Environ. Res., 233, 10.1016/j.envres.2023.116357
- Mattner, (2023), J. Appl. Phycol., 35, 10.1007/s10811-023-02979-0
- Matysiak, (2018), Ciência Rural, 48, 10.1590/0103-8478cr20180405
- Melo, (2020), Appl. Sci., 10, pp. 4052, 10.3390/app10114052
- Michalak, (2016), Eur. J. Phycol., 51, pp. 243, 10.1080/09670262.2015.1134813
- Mittal, (2023), Ultrason. Sonochem., 94, 10.1016/j.ultsonch.2023.106347
- Parsons, (2019), J. Clean. Prod., 232, pp. 1272, 10.1016/j.jclepro.2019.05.315
- Poblete-Castro, (2020), Curr. Opin. Biotechnol., 65, pp. 102, 10.1016/j.copbio.2020.02.008
- Pradel, (2021), J. Clean. Prod., 279, 10.1016/j.jclepro.2020.123296
- Punitha, (2024), Biomass Convers. Biorefinery, 14, 10.1007/s13399-022-03048-1
- Rengasamy, (2016), New Biotechnol., 33, pp. 273, 10.1016/j.nbt.2015.11.002
- Sánchez-Quintero, (2023), Microbiol. Res., 277, 10.1016/j.micres.2023.127505
- Santos, (2022), Sustainable Production and Consumption, 33, pp. 1018, 10.1016/j.spc.2022.08.018
- dos Santos, (2019), Ornamental Horticulture, 25, pp. 231, 10.1590/2447-536x.v25i3.2044
- Savci, (2012), APCBEE Proc., 1, pp. 287, 10.1016/j.apcbee.2012.03.047
- Shah, (2013), J. Plant Nutr., 36, pp. 192, 10.1080/01904167.2012.737886
- Shukla, (2019), Front. Plant Sci., 10, pp. 655, 10.3389/fpls.2019.00655
- Singh, (2018), J. Clean. Prod., 204, pp. 992, 10.1016/j.jclepro.2018.09.070
- Singh, (2018), J. Clean. Prod., 204, 10.1016/j.jclepro.2018.09.070
- Singh, (2023), Sugar Tech, 25, 10.1007/s12355-022-01217-0
- Sinnott, (2014), vol. 6
- Slegers, (2021), J. Clean. Prod., 319, 10.1016/j.jclepro.2021.128689
- Smith, (2005)
- Spain, (2024), Biomass Convers. Biorefinery, 14, 10.1007/s13399-022-02456-7
- Szczepanek, (2018), AgroLife Scientific Journal, 7
- van Tol de Castro, (2024), J. Appl. Phycol., 10.1007/s10811-024-03216-y
- Trejo Valencia, (2018), Agronomy, 8, pp. 264, 10.3390/agronomy8110264
- Turton, (2008)
- Udvardi, (2015), Procedia Environ. Sci., 29, pp. 303, 10.1016/j.proenv.2015.07.275
- Valencia, (2018), Yield and Nutraceutical Quality of Cucumber Fruit (Cucumis Sativus)
- Vijay Anand, (2018), J. Clean. Prod., 170, pp. 1621, 10.1016/j.jclepro.2017.09.241
- Vuarnoz, (2020), Journal of Building Engineering, 31, 10.1016/j.jobe.2020.101454
- Wahlen, (2017), Algal Res., 24, pp. 9, 10.1016/j.algal.2017.03.005
- Wally, (2013), J. Plant Growth Regul., 32, pp. 324, 10.1007/s00344-012-9301-9
- Wendt, (2019), Biotechnol. Biofuels, 12, pp. 1, 10.1186/s13068-019-1420-0
- Woods, (2007)
- Zarraonaindia, (2023), BIO Web Conf, 68, 10.1051/bioconf/20236801005
- Zhang, (2021), Algal Res., 60, 10.1016/j.algal.2021.102499