Towards the Use of Yellow Clay in Fired Bricks

  1. Achik, Maryam
  2. Moumni, Boutaina
  3. Benmoussa, Hayat
  4. Oulmekki, Abdellah
  5. Touache, Abdelhamid
  6. Gonzalez Álvaro, Gil
  7. Guitián Rivera, Francisco
  8. Infantes-Molina, Antonia
  9. Eliche-Quesada, Dolores
  10. Kizinievic, Olga
Libro:
Clay and Clay Minerals

Ano de publicación: 2021

Tipo: Capítulo de libro

DOI: 10.5772/INTECHOPEN.99009 GOOGLE SCHOLAR lock_openAcceso aberto editor

Obxectivos de Desenvolvemento Sustentable

Resumo

This chapter deals with the study of the possibility of using yellow clay - which was only used in pottery so far- in the civil engineering field as building materials, especially in the field of fired bricks. With the aim to improve the technological properties of yellow clay based bricks, two wastes were used as secondary raw materials. The first one is a mineral waste - pyrrhotite ash - this waste was neither characterized nor valued before by any other author. While the second waste is an organic waste - cedar sawdust - which is from the artisanal sector. Clay bricks containing yellow clay and different content of wastes were prepared and tested to evaluate their technological properties: water absorption, bulk density, porosity and mechanical strength… The test results indicate that the addition of wastes to clay bricks improves their technological properties and highlights the possibility of wastes reuse in a safe and sustainable way.

Referencias bibliográficas

  • S. El Moudni El Alami, M. Monkade, Valorisation des cendres volantes de la centrale thermique de jorf lasfar dans les ciments: Etude mecanique et environnementale, Physical and Chemical News. 51 (2010) 38-45
  • T. Hemalatha, A. Ramaswamy, A review on fly ash characteristics – Towards promoting high volume utilization in developing sustainable concrete, Journal of Cleaner Production. 147 (2017) 546-559. https://doi.org/10.1016/J.JCLEPRO.2017.01.114
  • G.A.P. RODRIGUEZ, Obtencion de Ladrillos Acumuladores de Calor a partir de Lodos Rojos, Universidade De Santiago, Instituto De Ceramica De Galicia, 1999
  • G. Rivera, Procediminiento para la obtencion de bloques ceramicos acumuladores de calor a partir de barros rojos del Proceso Bayer, UNIVERSITY OF SANTIAGO COMPOSTELA, 1997
  • G.A. Pérez Rodríguez, F. Guitián Rivera, S. De Aza Pendás, Obtención industrial de materiales cerámicos a partir de lodos rojos del proceso Bayer, Boletín de La Sociedad Española de Cerámica y Vidrio. 38 (1999) 220-226. https://doi.org/10.3989/cyv.1999.v38.i3.962
  • T.C.P. Rivera G., Mesa F. G., Procedimiento de obtencion de materiales ceramicos de alta densidad a partir de cenizas de piritas, (1999) 126 478
  • S.M.S. Kazmi, S. Abbas, M.A. Saleem, M.J. Munir, A. Khitab, Manufacturing of sustainable clay bricks: Utilization of waste sugarcane bagasse and rice husk ashes, Construction and Building Materials. 120 (2016) 29-41. https://doi.org/10.1016/J.CONBUILDMAT.2016.05.084
  • E.G. C.Viruthagiri, S. Sathiya Priya, N. Shanmugam, A. Balaji, K. Balamurugan, Spectroscopic investigation on the production of clay bricks with SCBC waste, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 149 (2015) 468-475
  • G.H.M.J. SubashiDe Silva, B.V.A. Perera, Effect of waste rice husk ash (RHA) on structural, thermal and acoustic properties of fired clay bricks, Journal of Building Engineering. 18 (2018) 252-259. https://doi.org/10.1016/j.jobe.2018.03.019
  • S.E. Chidiac, L.M. Federico, Effects of waste glass additions on the properties and durability of fired clay brick, Canadian Journal of Civil Engineering. 34 (2007) 1458-1466. https://doi.org/10.1139/L07-120
  • C.N. Djangang, E. Kamseu, A. Elimbi, G.L. Lecomte, P. Blanchart, Net-shape clay ceramics with glass waste additive, Materials Sciences and Applications. 05 (2014) 592-602. https://doi.org/10.4236/msa.2014.58061
  • D. Eliche-Quesada, S. Martínez-Martínez, L. Pérez-Villarejo, F.J. Iglesias-Godino, C. Martínez-García, F.A. Corpas-Iglesias, Valorization of biodiesel production residues in making porous clay brick, Fuel Processing Technology. 103 (2012) 166-173. https://doi.org/10.1016/J.FUPROC.2011.11.013
  • F. Saboya, G.C. Xavier, J. Alexandre, The use of the powder marble by-product to enhance the properties of brick ceramic, Construction and Building Materials. 21 (2007) 1950-1960. https://doi.org/10.1016/J.CONBUILDMAT.2006.05.029
  • M. V Madurwar, S.A. Mandavgane, R. V Ralegaonkar, Development and feasibility analysis of bagasse ash bricks, Journal of Energy Engineering. 141 (2014) 04014022. https://doi.org/10.1061/(asce)ey.1943-7897.0000200
  • D. Eliche-Quesada, M.A. Felipe-Sesé, J.A. López-Pérez, A. Infantes-Molina, Characterization and evaluation of rice husk ash and wood ash in sustainable clay matrix bricks, Ceramics International. 43 (2017) 463-475. https://doi.org/10.1016/J.CERAMINT.2016.09.181
  • O. Kizinievic, V. Kizinievic, Utilisation of wood ash from biomass for the production of ceramic products, Construction and Building Materials. 127 (2016) 264-273. https://doi.org/10.1016/J.CONBUILDMAT.2016.09.124
  • P. Turgut, H. Murat Algin, Limestone dust and wood sawdust as brick material, Building and Environment. 42 (2007) 3399-3403. https://doi.org/10.1016/j.buildenv.2006.08.012
  • B. Hatimi, J. Mouldar, A. Loudiki, H. Hafdi, M. Joudi, E.M. Daoudi, H. Nasrellah, I.-T. Lançar, M.A. El Mhammedi, M. Bakasse, Low cost pyrrhotite ash/clay-based inorganic membrane for industrial wastewaters treatment, Journal of Environmental Chemical Engineering. 8 (2020) 103646. https://doi.org/10.1016/j.jece.2019.103646
  • M. Achik, A. Oulmekki, M. Ijjaali, H. Benmoussa, N.E.L. Moudden, F.G. Rivera, Physicochemical characterization of an industrial waste: A case study of the pyrrhotite ash from south west of Morocco ., 8 (2017) 2738-2746
  • M. Achik, H. Benmoussa, A. Oulmekki, M. Ijjaali, N. EL Moudden, O. Kizinievic, V. Kizinievic, Evaluation of Physical and Mechanical Properties of Fired-Clay Bricks Incorporating both Mineral and Organic Wastes, the Proceedings of the 13th International Conference “Modern Building Materials, Structures and Techniques” (MBMST 2019). (2019). https://doi.org/10.3846/mbmst.2019.004
  • M Achik, A Oulmekki, M Ijjaali, H Benmoussa, O. Kizinievic, environmental study and valorization of an ashy waste: Case of pyrrhotite ash, IOP Conf Series. 606 (2019). https://doi.org/10.1088/1757-899X/660/1/012075
  • M. Achik, H. Benmoussa, A. Oulmekki, M. Ijjaali, N. El Moudden, A. Touache, G.G. Álvaro, F.G. Rivera, A. Infantes-Molina, D. Eliche-Quesada, O. Kizinievic, Evaluation of technological properties of fired clay bricks containing pyrrhotite ash, Construction and Building Materials. 269 (2021) 121312. https://doi.org/10.1016/j.conbuildmat.2020.121312
  • P. Muñoz Velasco, M.P. Morales Ortíz, M.A. Mendívil Giró, L. Muñoz Velasco, Fired clay bricks manufactured by adding wastes as sustainable construction material - a review, Construction and Building Materials. 63 (2014) 97-107. https://doi.org/10.1016/j.conbuildmat.2014.03.045
  • S. Abbas, M.A. Saleem, S.M.S. Kazmi, M.J. Munir, Production of sustainable clay bricks using waste fly ash: Mechanical and durability properties, Journal of Building Engineering. 14 (2017) 7-14. https://doi.org/10.1016/j.jobe.2017.09.008
  • A.M. Musthafa, K. Janaki, G. Velraj, Microscopy, porosimetry and chemical analysis to estimate the firing temperature of some archaeological pottery shreds from India, Microchemical Journal. 95 (2010) 311-314. https://doi.org/10.1016/J.MICROC.2010.01.006
  • N Alba, E Vázquez, S Gassó, J.M Baldasano. Stabilization/solidification of MSW incineration residues from facilities with different air pollution control systems. Durability of matrices versus carbonation. Waste Management. Volume 21, Issue 4, July 2001, Pages 313-323. https://doi.org/10.1016/S0956-053X(00)00082-9
  • J. Beleña-Pozo, I , Ordoñez-Belloc, L.M., Aliques-Granero, LEACHING STUDY OF ALKALI ACTIVATED MATERIALS FOR THEIR USE IN ROAD BUILDING, Materials Research Technical Unit, AIDICO, Paterna (Spain). (2014) 8
  • H.. van der Sloot, Comparison of the characteristic leaching behavior of cements using standard (EN 196-1) cement mortar and an assessment of their long-term environmental behavior in construction products during service life and recycling, Cement and Concrete Research. 30 (2000) 1079-1096. https://doi.org/10.1016/S0008-8846(00)00287-8
  • M. Sutcu, S. Akkurt, The use of recycled paper processing residues in making porous brick with reduced thermal conductivity, Ceramics International. 35 (2009) 2625-2631. https://doi.org/10.1016/J.CERAMINT.2009.02.027
  • Y. Taha, M. Benzaazoua, R. Hakkou, M. Mansori, Natural clay substitution by calamine processing wastes to manufacture fired bricks, Journal of Cleaner Production. 135 (2016) 847-858. https://doi.org/10.1016/j.jclepro.2016.06.200
  • C. Bories, M.-E. Borredon, E. Vedrenne, G. Vilarem, Development of eco-friendly porous fired clay bricks using pore-forming agents: A review, Journal of Environmental Management. 143 (2014) 186-196. https://doi.org/10.1016/J.JENVMAN.2014.05.006