Formulation strategies to improve the bioavailability of poorly absorbed drugs
- Espinar, Francisco Javier Otero
- Lavilla, Carlos Bendicho
- Fernández, Guillermo Blanco
- Tomé, Victoria Díaz
- Otero, Xurxo García
ISBN: 9780323918176
Ano de publicación: 2024
Páxinas: 223-255
Tipo: Capítulo de libro
Resumo
One of the most frequent causes for discarding new drug molecules in the first phases of early drug discovery is their poor bioavailability. The pharmaceutical R&D researcher must also frequently deal with drug molecules that exhibit poor bioavailability.The two principal causes of drug bioavailability issues are the low drug solubility and dissolution rate in the aqueous biological media surrounding the absorption membranes or the poor drug permeability across membrane barriers.Biopharmaceutical Classification System (BCS) is a classification developed to identify the causes of drug bioavailability issues. BCS class II includes drugs with solubility problems, class III with permeability issues, and class IV with both low solubility and low permeability. To successfully approach the formulation of drugs included in BCS class II–IV, it is necessary to know the specific causes of the low solubility or permeability of the drug. Based on this knowledge, formulation scientists can properly select the best strategies to increase the bioavailability of drugs.This chapter addresses the causes of low drug bioavailability, as well as the tools and strategies that formulators have to enhance the bioavailability of drugs with low absorption.
Referencias bibliográficas
- Amidon, (1995), Pharm Res, 12, pp. 413, 10.1023/A:1016212804288
- Committee for Medicinal Products for Human Use. ICH M9 guideline on biopharmaceutics classification system-based biowaivers; 2018.
- U.S. Department of Health and Human Services Food and Drug Administration. M9 Biopharmaceutics Classification System- based biowaivers guidance for industry; 2021.
- Tsume, (2014), Eur J Pharm Sci [Internet], 57, pp. 152, 10.1016/j.ejps.2014.01.009
- Rinaki, (2003), Pharm Res [Internet], 20, pp. 1917, 10.1023/B:PHAM.0000008037.57884.11
- Jain, (2001), J Pharm Sci [Internet], 90, pp. 234, 10.1002/1520-6017(200102)90:2<234::AID-JPS14>3.0.CO;2-V
- Yalkowsky, (1980), J Pharm Sci [Internet], 69, pp. 912, 10.1002/jps.2600690814
- Jorgensen, (2002), Adv Drug Deliv Rev [Internet], 54, pp. 355, 10.1016/S0169-409X(02)00008-X
- Serajuddin, (2007), Adv Drug Deliv Rev [Internet], 59, pp. 603, 10.1016/j.addr.2007.05.010
- Black, (2007), J Pharm Sci [Internet], 96, pp. 1053, 10.1002/jps.20927
- Hughey, (2016), AAPS Adv Pharm Sci Ser [Internet], 22, pp. 121, 10.1007/978-3-319-42609-9_3
- Paulekuhn, (2007), J Med Chem, 50, pp. 6665, 10.1021/jm701032y
- Higashi, (2017), Adv Drug Deliv Rev, 117, pp. 71, 10.1016/j.addr.2016.12.001
- Cerreia Vioglio, (2017), Adv Drug Deliv Rev, 117, pp. 86, 10.1016/j.addr.2017.07.001
- Kavanagh, (2018), J Control Rel, 283, pp. 1, 10.1016/j.jconrel.2018.05.024
- Bolla, (2022), Chem Rev [Internet], 10.1021/acs.chemrev.1c00987
- Gajda, (2019), Int J Pharm, 558, pp. 426, 10.1016/j.ijpharm.2019.01.016
- Kawakami, (2012), Adv Drug Deliv Rev, 64, pp. 480, 10.1016/j.addr.2011.10.009
- Kale D.P., Zode S.S., Bansal A.K. Clinical trials and translational medicine commentary challenges in translational development of pharmaceutical cocrystals; 2017 [cited 2022 Jun 8]; Available from: https://doi.org/10.1016/j.xphs.2016.10.021.
- Sathisaran, (2018), Pharmaceutics., 10, 10.3390/pharmaceutics10030108
- Wang, (2021), Asian J Pharm Sci, 16, pp. 307, 10.1016/j.ajps.2020.06.004
- Chiou, (1971), J Pharm Sci [Internet], 60, pp. 1281, 10.1002/jps.2600600902
- Karagianni, (2018), Pharmaceutics., 10, 10.3390/pharmaceutics10030098
- Cherukuvada, (2013), Chem Commun [Internet], 50, pp. 906, 10.1039/C3CC47521B
- Chaturvedi, (2020), ACS Omega, 5, pp. 9690, 10.1021/acsomega.9b03886
- Tran, (2019), Pharmaceutics., 11, 10.3390/pharmaceutics11030132
- Chaudhari, (2017), J Drug Deliv Sci Technol, 41, pp. 68, 10.1016/j.jddst.2017.06.010
- Loftsson, (2010), J Pharm Pharmacol [Internet], 62, pp. 1607, 10.1111/j.2042-7158.2010.01030.x
- Haley, (2020), Drug Deliv Transl Res [Internet], 10, pp. 661, 10.1007/s13346-020-00724-5
- Otero-Espinar, (2010), J Drug Deliv Sci Technol, 20, pp. 289, 10.1016/S1773-2247(10)50046-7
- Garcia-Rio, (2014), Curr Top Med Chem [Internet], 14, pp. 478, 10.2174/1568026613666131219123910
- Loftsson, (2005), Expert Opin Drug Deliv, 2, pp. 335, 10.1517/17425247.2.1.335
- Muankaew, (2018), Basic Clin Pharmacol Toxicol, 122, pp. 46, 10.1111/bcpt.12917
- Jambhekar, (2016), Drug Discov Today, 21, pp. 363, 10.1016/j.drudis.2015.11.016
- Luzardo-Alvarez, (2014), Curr Top Med Chem, 14, pp. 542, 10.2174/1568026613666131219125419
- Méndez, (2016), Exp Theor Stud J Incl Phenom Macrocycl Chem, 85, pp. 33, 10.1007/s10847-016-0603-6
- Loftsson, (2004), J Drug Deliv Sci Technol, 14, pp. 35, 10.1016/S1773-2247(04)50003-5
- Jansook, (2022), J Drug Deliv Sci Technol, 67, pp. 102980, 10.1016/j.jddst.2021.102980
- Serno, (2010), J Pharm Sci, 99, pp. 1193, 10.1002/jps.21931
- Serno, (2011), Adv Drug Deliv Rev, 63, pp. 1086, 10.1016/j.addr.2011.08.003
- Loftsson, (2007), Int J Pharm, 329, pp. 1, 10.1016/j.ijpharm.2006.10.044
- Esposito, (2016), Curr Pharm Des, 22, pp. 5382, 10.2174/1381612822666160726123227
- Pouton, (2008), Adv Drug Deliv Rev, 60, pp. 625, 10.1016/j.addr.2007.10.010
- Feeney, (2016), Adv Drug Deliv Rev, 101, pp. 167, 10.1016/j.addr.2016.04.007
- Pouton, (2000), Eur J Pharm Sci, 11, pp. S93, 10.1016/S0928-0987(00)00167-6
- Garces, (2018), Eur J Pharm Sci, 112, pp. 159, 10.1016/j.ejps.2017.11.023
- Kamble, (2020), Curr Nanomed, 10, pp. 298, 10.2174/2468187310999200818110030
- Blanco-Fernandez, (2022), Trends Pharmacol Sci [Internet], 0
- Liu, (2011), Pharm Res [Internet], 28, pp. 962, 10.1007/s11095-010-0303-7
- Mälkiä, (2004), Eur J Pharm Sci, 23, pp. 13, 10.1016/j.ejps.2004.05.009
- Ong, (1996), J Chromatogr A, 728, pp. 113, 10.1016/0021-9673(95)00837-3
- Ciura, (2020), Microchem J, 158, pp. 105236, 10.1016/j.microc.2020.105236
- Tsopelas, (2020), J Chromatogr A, 1621, pp. 461027, 10.1016/j.chroma.2020.461027
- Flaten G.E., Awoyemi O., Luthman K., Brandl M., Massing U. The phospholipid vesicle-based drug permeability assay: 5. Development toward an automated procedure for high-throughput permeability screening: Available from: https://doi.org/10.1016/j.jala2008.04.002 [Internet]; 2009 Feb 1 [cited 2022 Aug 1];14(1):12–21. Available from: https://journals.sagepub.com/doi/10.1016/j.jala.2008.04.002.
- Melchior, (1997), Biotechnol Tech, 11, pp. 885, 10.1023/A:1018458232161
- Melchior, (2002), J Pharm Sci, 91, pp. 1075, 10.1002/jps.10101
- Berben, (2018), Eur J Pharm Sci, 119, pp. 219, 10.1016/j.ejps.2018.04.016
- Volpe, (2010), AAPS J [Internet], 12, pp. 670, 10.1208/s12248-010-9227-8
- Yang, (1997), Adv Drug Deliv Rev, 23, pp. 229, 10.1016/S0169-409X(96)00438-3
- Bujard, (2017), Eur J Pharm Sci, 97, pp. 143, 10.1016/j.ejps.2016.11.001
- Kellard, (2007), SLAS Technol, 12, pp. 104
- Arce, (2020), Pharm [Internet], 12, pp. 173
- Balimane, (2005), Drug Discov Today, 10, pp. 335, 10.1016/S1359-6446(04)03354-9
- Volpe D.A. Advances in cell-based permeability assays to screen drugs for intestinal absorption. https://doi.org/10.1080/17460441.2020.1735347 [Internet]; 2020 May 3 [cited 2022 Aug 1];15(5):539–49. Available from: https://www.tandfonline.com/doi/abs/10.1080/17460441.2020.1735347.
- Nunes, (2016), Concepts Model Drug Permeab Stud Cell Tissue based Vitr Cult Model, pp. 203
- Ng, (2010), AAPS PharmSciTech [Internet], 11, pp. 1432, 10.1208/s12249-010-9522-9
- Nogueiras-Nieto, (2013), Eur J Pharm Biopharm [Internet], 83, pp. 370, 10.1016/j.ejpb.2012.11.004
- Díaz-Tomé, (2021), Int J Pharm, pp. 597
- Tang C., Yu J., Yin L., Yin C., Pei Y. Transport of insulin in modified Valia-Chien Chambers and Caco-2 Cell Monolayers. Available from: https://doi.org/10.1080/03639040601011231 [Internet]. 2008 Apr [cited 2022 Aug 1];33(4):449–56, https://www.tandfonline.com/doi/abs/10.1080/03639040601011231.
- Bartos, (2021), Pharm [Internet], 13, pp. 846
- Alam, (2012), J Pharm Pharmacol [Internet], 64, pp. 326, 10.1111/j.2042-7158.2011.01391.x
- Hillgren, (1995), Med Res Rev [Internet], 15, pp. 83, 10.1002/med.2610150202
- Doluisio, (1969), J Pharm Sci [Internet], 58, pp. 1196, 10.1002/jps.2600581006
- Ruiz-Picazo, (2017), Eur J Pharm Sci [Internet], 107, pp. 191, 10.1016/j.ejps.2017.06.033
- Dahlgren, (2015), J Pharm Sci [Internet], 104, pp. 2702, 10.1002/jps.24258
- Castro-Balado, (2019), Pharmaceutics., 11, pp. 1, 10.3390/pharmaceutics11050237
- Ball, (2013), AAPS J [Internet], 15, pp. 913, 10.1208/s12248-013-9496-0
- Lipinski, (1997), Adv Drug Deliv Rev, 23, pp. 3, 10.1016/S0169-409X(96)00423-1
- Matsson, (2016), Adv Drug Deliv Rev, 101, pp. 42, 10.1016/j.addr.2016.03.013
- Palm, (1997), Pharm Res [Internet], 14, pp. 568, 10.1023/A:1012188625088
- Veber, (2002), J Med Chem [Internet], 45, pp. 2615, 10.1021/jm020017n
- Matsson, (2017), J Med Chem, 60, pp. 1662, 10.1021/acs.jmedchem.7b00237
- Whitty, (2016), Drug Discov Today, 21, pp. 712, 10.1016/j.drudis.2016.02.005
- Kokate, (2008), AAPS PharmSciTech [Internet], 9, pp. 501, 10.1208/s12249-008-9071-7
- Bhal, (2007), Mol Pharm [Internet], 4, pp. 556, 10.1021/mp0700209
- Neubert, (1989), Pharm Res [Internet], 6, pp. 743, 10.1023/A:1015963128124
- Tsuji, (1996), Pharm Res [Internet], 13, pp. 963, 10.1023/A:1016086003070
- Petzinger, (2006), Naunyn Schmiedebergs Arch Pharmacol [Internet], 372, pp. 465, 10.1007/s00210-006-0042-9
- Pavlović, (2018), Front Pharmacol, 9, pp. 1283, 10.3389/fphar.2018.01283
- Ahmad, (2004), J Invest Dermatol [Internet], 123, pp. 417, 10.1111/j.0022-202X.2004.23307.x
- Ling, (2004), Chem Biol Interact, 147, pp. 247, 10.1016/j.cbi.2004.02.003
- Nakano, (2014), Drug Metab Rev [Internet]., pp. 1
- Fanning, (1999), J Am Soc Nephrol [Internet], 10, pp. 1337, 10.1681/ASN.V1061337
- Salama, (2006), Adv Drug Deliv Rev [Internet], 58, pp. 15, 10.1016/j.addr.2006.01.003
- Brunner, (2021), Adv Drug Deliv Rev, 171, pp. 266, 10.1016/j.addr.2021.02.008
- Citi, (1992), J Cell Biol [Internet], 117, pp. 169, 10.1083/jcb.117.1.169
- Scott Swenson, (1992), Adv Drug Deliv Rev, 8, pp. 39, 10.1016/0169-409X(92)90015-I
- Aungst, (2012), AAPS J [Internet], 14, pp. 10, 10.1208/s12248-011-9307-4
- Yewale, (2015), Crit Rev Ther Drug Carr Syst [Internet], 32, pp. 363, 10.1615/CritRevTherDrugCarrierSyst.2015011865
- Sohi, (2010), Drug Dev Ind Pharm [Internet], 36
- Veuillez, (2001), Eur J Pharm Biopharm, 51, pp. 93, 10.1016/S0939-6411(00)00144-2
- Li, (2016), Drug Deliv, 23, pp. 2272, 10.3109/10717544.2014.971196
- Moiseev, (2019), Pharm [Internet], 11, pp. 321
- Som, (2012), J Pharm Bioallied Sci [Internet], 4, pp. 2, 10.4103/0975-7406.92724
- Cutrín-Gómez, (2018), Pharmaceutics [Internet], 10, pp. 273, 10.3390/pharmaceutics10040273
- Cutrín-Gómez, (2020), Pharmaceutics [Internet], 12
- Şenel, (2001), J Control Rel, 72, pp. 133, 10.1016/S0168-3659(01)00269-3
- Loftsson, (2011), J Pharm Pharmacol [Internet], 63, pp. 1119, 10.1111/j.2042-7158.2011.01279.x
- Figueiras, (2009), Eur J Pharm Biopharm, 71, pp. 339, 10.1016/j.ejpb.2008.08.016
- Merkus, (1999), Adv Drug Deliv Rev, 36, pp. 41, 10.1016/S0169-409X(98)00054-4
- Gómez, (2018), Eur J Pharm Sci, 117, pp. 270, 10.1016/j.ejps.2018.02.028
- Díaz-Tomé, (2018), J Pharm Sci, 10.1016/j.xphs.2017.12.028
- Conde Penedo, (2021), Eur J Pharm Biopharm, 162, pp. 12, 10.1016/j.ejpb.2021.02.012
- Goldstein, (1986), Ann Emerg Med [Internet], 15, pp. 1013, 10.1016/S0196-0644(86)80120-2
- Ingólfsson, (2011), Biophys J, 101, pp. 847, 10.1016/j.bpj.2011.07.013
- Ma, (1999), Am J Physiol - Gastrointest Liver Physiol [Internet], 276
- Bors, (2020), Brain Res Bull, 160, pp. 65, 10.1016/j.brainresbull.2020.04.012
- Zhou, (2014), AIDS Res Hum Retroviruses [Internet], 30, pp. 1106, 10.1089/aid.2013.0281
- Janga, (2018), J Pharm Sci [Internet], 107, pp. 2128, 10.1016/j.xphs.2018.04.008
- Werle, (2008), J Pharm Sci [Internet], 97, pp. 60, 10.1002/jps.21090
- Gampa, (2020), Drug Efflux Pumps Cancer Resist Pathw Mol Recognit Charact Possible Inhib Strateg Chemother, pp. 277
- Yanagisawa, (1999), Br J Cancer [Internet], 80, pp. 1190, 10.1038/sj.bjc.6990485
- Starling, (1997), Adv Enzyme Regul [Internet], 37, pp. 335, 10.1016/S0065-2571(96)00021-0
- Mistry, (2002), Curr Opin Investig Drugs, 3, pp. 1666
- Fox E., Bates S.E. Tariquidar (XR9576): a P-glycoprotein drug efflux pump inhibitor. https://doi.org/10.1586/14737140.7.4.447 [Internet]. 2014 Apr [cited 2022 Aug 3];7(4):447–59. Available from: https://www.tandfonline.com/doi/abs/10.1586/14737140.7.4.447.
- Zhang, (2011), J Agric Food Chem [Internet], 59, pp. 10919, 10.1021/jf202712y
- Rong, (2014), J Pharm Sci [Internet], 103, pp. 730, 10.1002/jps.23807
- Shen, (2006), Int J Pharm [Internet], 313, pp. 49, 10.1016/j.ijpharm.2006.01.020
- Wang, (2020), Acta Pharm Sin B, 10, pp. 2002, 10.1016/j.apsb.2020.02.001
- Werle, (2008), Pharm Res [Internet], 25, pp. 500, 10.1007/s11095-007-9347-8
- Föger, (2006), Biomater [Internet], 27, pp. 5855, 10.1016/j.biomaterials.2006.08.004
- Bromberg, (2003), J Control Rel [Internet], 88, pp. 11, 10.1016/S0168-3659(02)00419-4
- Rege, (2002), Eur J Pharm Sci [Internet], 16, pp. 237, 10.1016/S0928-0987(02)00055-6
- Rezhdo, (2016), J Control Rel [Internet], 240, pp. 544, 10.1016/j.jconrel.2016.07.050
- Markovic, (2020), Int J Mol Sci [Internet], 21
- Porter, (2007), Nat Rev Drug Discov [Internet], 6, pp. 231, 10.1038/nrd2197
- Markovic, (2019), Med Res Rev, 39, pp. 579, 10.1002/med.21533
- Víctor Álvarez, (2019), Pharmaceutics., 11
- Rahman M.A., Hussain A., Hussain M.S., Mirza M.A., Iqbal Z. Role of excipients in successful development of self-emulsifying/microemulsifying drug delivery system (SEDDS/SMEDDS). https://doi.org/10.3109/03639045.2012.660949 [Internet]; 2012 Jan [cited 2022 Aug 2];39(1):1–19. Available from: https://www.tandfonline.com/doi/abs/10.3109/03639045.2012.660949.
- Singh, (2009), Crit Rev Ther Drug Carr Syst [Internet], 26, pp. 427, 10.1615/CritRevTherDrugCarrierSyst.v26.i5.10
- Pouton, (1997), Adv Drug Deliv Rev, 25, pp. 47, 10.1016/S0169-409X(96)00490-5
- Guy, (2000), J Control Rel, 64, pp. 129, 10.1016/S0168-3659(99)00132-7
- Gehl, (2003), Acta Physiol Scand [Internet], 177, pp. 437, 10.1046/j.1365-201X.2003.01093.x
- Lee, (2017), Percutaneous Penetration Enhanc Phys Methods Penetration Enhanc [Internet], pp. 15, 10.1007/978-3-662-53273-7_2
- Benson, (2017), Percutaneous Penetration Enhanc Phys Methods Penetration Enhanc [Internet], pp. 195, 10.1007/978-3-662-53273-7_12
- Jung, (2021), J Pharm Investig [Internet], 51, pp. 503, 10.1007/s40005-021-00512-4
- Gill, (2017), Percutaneous Penetration Enhanc Phys Methods Penetration Enhanc [Internet], pp. 243, 10.1007/978-3-662-53273-7_16
- Varela-Fernández, (2020), 12
- Lee, (2022), Adv Healthc Mater [Internet], 11, pp. 2102599, 10.1002/adhm.202102599
- Roy G., Galigama R.D., Thorat V.S., Garg P., Venuganti V.V.K. Microneedle ocular patch: fabrication, characterization, and ex-vivo evaluation using pilocarpine as model drug. https://doi.org/10.1080/03639045.2020.1776317 [Internet]; 2020 Jul 2 [cited 2022 Aug 3];46(7):1114–22. Available from: https://www.tandfonline.com/doi/abs/10.1080/03639045.2020.1776317.
- Perez, (2020), J Ocul Pharmacol Ther [Internet], 36, pp. 75, 10.1089/jop.2019.0034
- Jia, (2017), Int J Ophthalmol [Internet]., 10, pp. 717
- Rong, (2017), Exp Eye Res, 162, pp. 37, 10.1016/j.exer.2017.07.002