Flash-photolysis of 2-(2′-hydroxyphenyl)-3-H-indole. Ground-state keto-enol tautomerization by mutual hydrogen exchange and by proton catalysis

  1. Stephan, Jens S.
  2. Rodríguez, Carmen Ríos
  3. Grellmann, Karl H.
  4. Zachariasse, Klaas A.
Zeitschrift:
Chemical Physics

ISSN: 0301-0104

Datum der Publikation: 1994

Ausgabe: 186

Nummer: 2-3

Seiten: 435-446

Art: Artikel

DOI: 10.1016/0301-0104(94)01624-0 GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: Chemical Physics

Ziele für nachhaltige Entwicklung

Zusammenfassung

Efficient excited-state intramolecular proton transfer (ESIPT) in 2-(2′-hydroxy-5′-methylphenyl)-3,3-dimethyl-3H-indole (HBC) leads to the formation of an unstable trans-keto tautomer 1Ktr whose transient absorption can be observed in flash experiments. The assignment of this transient absorption to the trans-keto tautomer is corroborated by the observation that a similar transient is not formed from BHBC, which has been synthesized as a bridged, rotationally blocked counterpart of HBC. In hydrocarbon solvents, two 1Ktr molecules revert by a mutual hydrogen-exchange reaction to the stable enol form of HBC. This second-order reaction is diffusion-controlled and its rate constant is proportional to T/η over a wide range of the solvent viscosity η. In the presence of alcohols (ROH) a first-order, pseudo-monomolecular proton-catalysed re-enolization reaction competes with the second-order reaction. With methanol and ethanol as proton donors it is shown that two donor molecules are involved in this process. The rate of the proton-catalysed reaction increases with decreasing temperatures. A pre-equilibrium between a nonreactive 1Ktr and a reactive 1Ktr::: (ROH)2 complex is the reason for this unusual temperature dependence of the first-order 1Ktr decay rate.

Bibliographische Referenzen

  • Woolfe, (1983), Chem. Phys., 77, pp. 213, 10.1016/0301-0104(83)85078-2
  • Brewer, (1990), J. Phys. Chem., 94, pp. 1915, 10.1021/j100368a036
  • Al-Soufi, (1990), Chem. Phys. Letters, 174, pp. 609, 10.1016/0009-2614(90)85495-X
  • Chou, (1992), Chem. Phys. Letters, 195, pp. 586, 10.1016/0009-2614(92)85567-T
  • Stephan, (1993)
  • Kensy, (1992)
  • U. Kensy, J.S. Stephan and K.H. Grellmann, in preparation.
  • Grellmann, (1989), Chem. Phys., 136, pp. 201, 10.1016/0301-0104(89)80047-3
  • Zachariasse, (1984), J. Am. Chem. Soc., 106, pp. 1045, 10.1021/ja00316a038
  • Zachariasse, (1991), J. Phys. Chem., 95, pp. 5476, 10.1021/j100167a024
  • Staveley, (1951), J. Chem. Soc., pp. 25/6
  • Timmermans, (1950), pp. 302
  • Timmermans, (1950), pp. 308
  • Salis, (1968), J. Phys. Chem., 72, pp. 752, 10.1021/j100848a068
  • Ruth, (1992), Z. Physik. Chem., 175, pp. 91, 10.1524/zpch.1992.175.Part_1.091
  • Prieto, (1988), Chem. Phys. Letters, 146, pp. 3887, 10.1016/0009-2614(88)87464-5
  • Anderson, (1975), J. Phys. Chem., 79, pp. 2340, 10.1021/j100589a003
  • Mordziński, (1990), Chem. Phys., 140, pp. 167, 10.1016/0301-0104(90)89057-W