Synergistic Effects of Functionalized WS2 and SiO2 Nanoparticles and a Phosphonium Ionic Liquid as Hybrid Additives of Low-Viscosity Lubricants

  1. Liñeira del Río, José M. 2
  2. Fernandes, Carlos M. C. G. 1
  3. Gonçalves, David E. P. 1
  4. Seabra, Jorge H. O. 1
  1. 1 Universidade Do Porto
    info

    Universidade Do Porto

    Oporto, Portugal

    ROR https://ror.org/043pwc612

  2. 2 Departamento de Física Aplicada. Universidade de Santiago de Compostela
Revista:
Lubricants

ISSN: 2075-4442

Ano de publicación: 2024

Volume: 12

Número: 2

Páxinas: 58

Tipo: Artigo

DOI: 10.3390/LUBRICANTS12020058 GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Lubricants

Resumo

This research shows the antifriction and antiwear synergies between a phosphonium ionic liquid (IL) and f-WS2 and f-SiO2 nanoparticles (NPs) as additives of a base oil with low viscosity (PAO6). Mass concentrations of 0.1 wt% nanoadditives and 1% IL were selected to formulate the nanolubricants. Pure sliding and rolling–sliding friction tests were performed at 120 °C, finding great friction reductions in comparison with the PAO6 base oil, specifically for the double hybrid nanolubricant (PAO6 + 1 wt% IL + 0.1 wt% f-WS2 + 0.1 wt% f-SiO2). Regarding the wear produced, the greatest antiwear behavior was also achieved for the double hybrid nanolubricant (width reduction of 48% and worn area decrease of 84%). Furthermore, by means of Raman microscopy and roughness examination of the worn surfaces, it can be proposed that the lubrication mechanism of doubled hybrid nanolubricants could be supported by the adsorbed tribofilm (IL and f-WS2) as well as the mending effects (f-WS2 and f-SiO2).

Referencias bibliográficas

  • Holmberg, (2019), Tribol. Int., 135, pp. 389, 10.1016/j.triboint.2019.03.024
  • Gupta, A. (2012). Characterization of Engine and Transmission Lubricants for Electric, Hybrid, and Plug-In Hybrid Vehicles. [Ph.D. Thesis, Ohio State University].
  • Tormos, (2023), Tribol. Int., 188, pp. 108848, 10.1016/j.triboint.2023.108848
  • Dassenoy, (2022), Lubr. Sci., 34, pp. 1, 10.1002/ls.1568
  • (2023), J. Mol. Liq., 382, pp. 121913, 10.1016/j.molliq.2023.121913
  • Gulzar, (2016), J. Nanoparticle Res., 18, pp. 223, 10.1007/s11051-016-3537-4
  • Singh, (2020), Mater. Today Proc., 25, pp. 586, 10.1016/j.matpr.2019.07.245
  • Alba, (2023), J. Mol. Liq., 391, pp. 123188, 10.1016/j.molliq.2023.123188
  • Mu, (2005), Tribol. Int., 38, pp. 725, 10.1016/j.triboint.2004.10.003
  • Qu, (2006), Tribol. Lett., 22, pp. 207, 10.1007/s11249-006-9081-0
  • Kheireddin, (2013), Wear, 303, pp. 185, 10.1016/j.wear.2013.03.004
  • Avilés, M.-D., Saurín, N., Sanes, J., Carrión, F.-J., and Bermúdez, M.-D. (2017). Ionanocarbon Lubricants. The Combination of Ionic Liquids and Carbon Nanophases in Tribology. Lubricants, 5.
  • Zhou, (2017), ACS Appl. Mater. Interfaces, 9, pp. 3209, 10.1021/acsami.6b12489
  • Otero, (2014), ACS Appl. Mater. Interfaces, 6, pp. 13115, 10.1021/am502980m
  • Zhou, (2014), Langmuir, 30, pp. 13301, 10.1021/la5032366
  • (2021), J. Mol. Liq., 336, pp. 116885, 10.1016/j.molliq.2021.116885
  • Khare, (2013), ACS Appl. Mater. Interfaces, 5, pp. 4063, 10.1021/am302761c
  • Zhang, (2015), ACS Appl. Mater. Interfaces, 7, pp. 8592, 10.1021/acsami.5b00598
  • (2020), J. Mol. Liq., 301, pp. 112442, 10.1016/j.molliq.2020.112442
  • Maurya, (2022), Tribol. Lett., 70, pp. 11, 10.1007/s11249-021-01551-6
  • Sabarinath, (2019), Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 233, pp. 1306, 10.1177/1350650119837831
  • Nasser, (2020), J. Mol. Liq., 311, pp. 113343, 10.1016/j.molliq.2020.113343
  • Nasser, (2021), Tribol. Int., 163, pp. 107189, 10.1016/j.triboint.2021.107189
  • Upendra, (2020), J. Tribol., 142, pp. 052101, 10.1115/1.4045769
  • Nasser, (2021), J. Mol. Liq., 336, pp. 116266, 10.1016/j.molliq.2021.116266
  • Kumar, (2023), Tribol.-Mater. Surf. Interfaces, 17, pp. 217, 10.1080/17515831.2023.2235234
  • Hu, N., Zhang, X., Wang, X., Wu, N., and Wang, S. (2020). Study on Tribological Properties and Mechanisms of Different Morphology WS2 as Lubricant Additives. Materials, 13.
  • Lu, (2019), Tribol. Int., 130, pp. 308, 10.1016/j.triboint.2018.09.030
  • Hamisa, A.H., Azmi, W.H., Ismail, M.F., Rahim, R.A., and Ali, H.M. (2023). Tribology Performance of Polyol-Ester Based TiO2, SiO2, and Their Hybrid Nanolubricants. Lubricants, 11.
  • Cortes, V., Sanchez, K., Gonzalez, R., Alcoutlabi, M., and Ortega, J.A. (2020). The Performance of SiO2 and TiO2 Nanoparticles as Lubricant Additives in Sunflower Oil. Lubricants, 8.
  • Seabra, (2023), Wear, 530–531, pp. 205025
  • Wu, (2012), ACS Appl. Mater. Interfaces, 4, pp. 6530, 10.1021/am301397e
  • Latha, (2020), J. Electrochem. Soc., 167, pp. 070501, 10.1149/2.0012007JES
  • Hu, (2003), Chem. Phys. Lett., 378, pp. 299, 10.1016/j.cplett.2003.07.015
  • Budiarti, (2017), Procedia Eng., 170, pp. 65, 10.1016/j.proeng.2017.03.013
  • Berkdemir, (2013), Sci. Rep., 3, pp. 1755, 10.1038/srep01755
  • Lee, (2008), J. Phys. Chem. C, 112, pp. 6487, 10.1021/jp076485w
  • Liñeira del Río, J.M., López, E.R., González Gómez, M., Yáñez Vilar, S., Piñeiro, Y., Rivas, J., Gonçalves, D.E.P., Seabra, J.H.O., and Fernández, J. (2020). Tribological Behavior of Nanolubricants Based on Coated Magnetic Nanoparticles and Trimethylolpropane Trioleate Base Oil. Nanomaterials, 10.
  • Hamrock, B.J., Schmid, S.R., and Jacobson, B.O. (2004). Fundamentals of Fluid Film Lubrication, CRC Press. [2nd ed.].
  • Petzold, (2018), Beilstein J. Nanotechnol., 9, pp. 1647, 10.3762/bjnano.9.157
  • Vorholzer, (2019), Phys. Rev. X, 9, pp. 041045
  • Seabra, (2023), J. Mol. Liq., 371, pp. 121097, 10.1016/j.molliq.2022.121097
  • Hamrock, B., and Dowson, D. (2024, January 21). Minimum Film Thickness in Elliptical Contacts for Different Regimes of Fluid-Film Lubrication, Available online: https://ntrs.nasa.gov/citations/19780025504.
  • Seabra, (2019), Ind. Eng. Chem. Res., 58, pp. 1732, 10.1021/acs.iecr.8b05090
  • Sanes, (2009), Molecules, 14, pp. 2888, 10.3390/molecules14082888
  • Li, (2016), Phys. Chem. Chem., 18, pp. 6541, 10.1039/C5CP07061A
  • Li, (2018), Tribol. Int., 125, pp. 39, 10.1016/j.triboint.2018.04.019
  • Dai, (2016), Tribol. Int., 102, pp. 88, 10.1016/j.triboint.2016.05.020
  • Gullac, (2010), Tribol. Trans., 53, pp. 939, 10.1080/10402004.2010.511761
  • Peng, (2009), Tribol. Int., 42, pp. 911, 10.1016/j.triboint.2008.12.015