Advanced 3D In Vitro Models to Recapitulate the Breast Tumor Microenvironment

  1. Bağcı, Gülsün 1
  2. Ximenes-Carballo, Celia 1
  3. Perez-Amodio, Soledad 1
  4. Castaño, Oscar 12
  5. Engel, Elisabeth 12
  6. Blanco-Fernandez, Barbara 134
  1. 1 Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
  2. 2 Electronics and Biomedical Engineering, University of Barcelona (UB), Barcelona, Spain
  3. 3 CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
  4. 4 IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain
Libro:
Interdisciplinary Cancer Research

ISSN: 2731-4561 2731-457X

Año de publicación: 2022

Tipo: Capítulo de Libro

DOI: 10.1007/16833_2022_56 GOOGLE SCHOLAR lock_openAcceso abierto editor

Objetivos de desarrollo sostenible

Resumen

Breast cancer research still relies on 2D in vitro and animal models, although they cannot recapitulate the high complexity of human tumors. 3D in vitro models could assist the scientific community by providing platforms that recapitulate the main properties of human tumors for helping to understand the breast tumor microenvironment and discover new biomarkers and therapeutics. This chapter highlights the most relevant studies performed in the last years regarding 3D in vitro breast cancer modeling, covering the scaffold-based models recapitulating the breast tumor microenvironments, the main biomaterials used for recapitulating the tumor extracellular matrix, as well as the engineering approaches to mimic the tumor

Referencias bibliográficas

  • Abu-Yousif AO, Rizvi I, Evans CL et al (2010) PuraMatrix encapsulation of cancer cells. J Vis Exp 34. https://doi.org/10.3791/1692
  • Afrimzon E, Botchkina G, Zurgil N et al (2016) Hydrogel microstructure live-cell array for multiplexed analyses of cancer stem cells, tumor heterogeneity and differential drug response at single-element resolution. Lab Chip 16:1047–1062. https://doi.org/10.1039/C6LC00014B
  • Agarwal P, Wang H, Sun M et al (2017) Microfluidics enabled bottom-up engineering of 3D vascularized tumor for drug discovery. ACS Nano 11:6691–6702. https://doi.org/10.1021/acsnano.7b00824
  • Aisenbrey EA, Murphy WL (2020) Synthetic alternatives to Matrigel. Nat Rev Mater 5:539–551
  • Anemone A, Consolino L, Conti L et al (2021) Tumour acidosis evaluated in vivo by MRI-CEST pH imaging reveals breast cancer metastatic potential. Br J Cancer 124:207–216. https://doi.org/10.1038/s41416-020-01173-0
  • Annabi N, Nichol JW, Zhong X et al (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev 16:371–383. https://doi.org/10.1089/ten.TEB.2009.0639
  • Antunes J, Gaspar VM, Ferreira L et al (2019) In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening. Acta Biomater 94:392–409. https://doi.org/10.1016/j.actbio.2019.06.012
  • Arya AD, Hallur PM, Karkisaval AG et al (2016) Gelatin methacrylate hydrogels as biomimetic three-dimensional matrixes for modeling breast cancer invasion and Chemoresponse in vitro. ACS Appl Mater Interfaces 8:22005–22017. https://doi.org/10.1021/acsami.6b06309
  • Ashworth J, Thompson J, James J et al (2020) Peptide gels of fully-defined composition and mechanics for probing cell-cell and cell-matrix interactions in vitro. Matrix Biol 85:15–33. https://doi.org/10.1016/j.matbio.2019.06.009
  • Assunção M, Wong CW, Richardson JJ et al (2020) Macromolecular dextran sulfate facilitates extracellular matrix deposition by electrostatic interaction independent from a macromolecular crowding effect. Mater Sci Eng C 106:110280. https://doi.org/10.1016/j.msec.2019.110280
  • Aung A, Theprungsirikul J, Lim HL, Varghese S (2016) Chemotaxis-driven assembly of endothelial barrier in a tumor-on-a-chip platform. Lab Chip 16:1886–1898. https://doi.org/10.1039/c6lc00184j
  • Aung A, Kumar V, Theprungsirikul J et al (2020) An engineered tumor-on-a-chip device with breast cancer–immune cell interactions for assessing T-cell recruitment. Cancer Res 80:263–275. https://doi.org/10.1158/0008-5472.CAN-19-0342
  • Ayuso JM, Gong MM, Skala MC et al (2020) Human tumor-lymphatic microfluidic model reveals differential conditioning of lymphatic vessels by breast cancer cells. Adv Healthc Mater 9:e1900925. https://doi.org/10.1002/adhm.201900925
  • Baghban R, Roshangar L, Jahanban-Esfahlan R et al (2020) Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 18:59
  • Bahcecioglu G, Basara G, Ellis BW et al (2020) Breast cancer models: engineering the tumor microenvironment. Acta Biomater 106:1–21. https://doi.org/10.1016/j.actbio.2020.02.006
  • Baker AEG, Tam RY, Shoichet MS (2017) Independently tuning the biochemical and mechanical properties of 3D Hyaluronan-based hydrogels with oxime and diels-alder chemistry to culture breast cancer spheroids. Biomacromolecules 18:4373–4384. https://doi.org/10.1021/acs.biomac.7b01422
  • Balachander GM, Balaji SA, Rangarajan A, Chatterjee K (2015) Enhanced metastatic potential in a 3D tissue scaffold toward a comprehensive in vitro model for breast cancer metastasis. ACS Appl Mater Interfaces 7:27810–27822. https://doi.org/10.1021/acsami.5b09064
  • Balachander GM, Rajashekar B, Sarashetti MP et al (2018a) MiRNomics reveals breast cancer cells cultured on 3D scaffolds better mimic tumors in vivo than conventional 2D culture. ACS Biomater Sci Eng 4:116–127. https://doi.org/10.1021/acsbiomaterials.7b00694
  • Balachander GM, Talukdar PM, Debnath M et al (2018b) Inflammatory role of cancer-associated fibroblasts in invasive breast tumors revealed using a fibrous polymer scaffold. ACS Appl Mater Interfaces 10:33814–33826. https://doi.org/10.1021/acsami.8b07609
  • Barrera-Rodríguez R, Fuentes JM (2015) Multidrug resistance characterization in multicellular tumour spheroids from two human lung cancer cell lines. Cancer Cell Int 15:47. https://doi.org/10.1186/s12935-015-0200-6
  • Beck JN, Singh A, Rothenberg AR et al (2013) The independent roles of mechanical, structural and adhesion characteristics of 3D hydrogels on the regulation of cancer invasion and dissemination. Biomaterials 34:9486–9495. https://doi.org/10.1016/j.biomaterials.2013.08.077
  • Berger J, Reist M, Mayer JM et al (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34
  • Berger AJ, Renner CM, Hale I et al (2020) Scaffold stiffness influences breast cancer cell invasion via EGFR-linked Mena upregulation and matrix remodeling. Matrix Biol 85–86:80–93. https://doi.org/10.1016/j.matbio.2019.07.006
  • Bersini S, Jeon JS, Dubini G et al (2014) A microfluidic 3D invitro model for specificity of breast cancer metastasis to bone. Biomaterials 35:2454–2461. https://doi.org/10.1016/j.biomaterials.2013.11.050
  • Bidarra SJ, Oliveira P, Rocha S et al (2016) A 3D in vitro model to explore the inter-conversion between epithelial and mesenchymal states during EMT and its reversion. Sci Rep 6:27072. https://doi.org/10.1038/srep27072
  • Blanco-Fernandez B, Cano-Torres I, Garrido C et al (2021a) Engineered microtissues for the bystander therapy against cancer. Mater Sci Eng C Mater Biol Appl 121:111854. https://doi.org/10.1016/j.msec.2020.111854
  • Blanco-Fernandez B, Gaspar VM, Engel E, Mano JF (2021b) Proteinaceous hydrogels for bioengineering advanced 3D tumor models. Adv Sci 2003129:1–38. https://doi.org/10.1002/advs.202003129
  • Blanco-Fernandez B, Rey-Vinolas S, Bagci G et al (2022) Bioprinting decellularized breast tissue for the development of 3D breast cancer models. ACS Appl Mater Interfaces 14(26):29467–29482
  • Boix-Montesinos P, Soriano-Teruel PM, Armiñán A et al (2021) The past, present, and future of breast cancer models for nanomedicine development. Adv Drug Deliv Rev 173:306–330
  • Brahimi-Horn M, Chiche J, Pouyssegur J (2007) Hypoxia and cancer. J Mol Med 85:1301e7. https://doi.org/10.1007/s00109-007-0281-3
  • Bray LJ, Binner M, Holzheu A et al (2015) Multi-parametric hydrogels support 3D in vitro bioengineered microenvironment models of tumour angiogenesis. Biomaterials 53:609–620. https://doi.org/10.1016/j.biomaterials.2015.02.124
  • Buchanan CF, Voigt EE, Szot CS et al (2014) Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization. Tissue Eng Part C Methods 20:64–75. https://doi.org/10.1089/ten.TEC.2012.0731
  • Campaner E, Zannini A, Santorsola M et al (2020) Breast cancer organoids model patient-specific response to drug treatment. Cancers (Basel) 12:1–19. https://doi.org/10.3390/cancers12123869
  • Campbell JJ, Davidenko N, Caffarel MM et al (2011) A multifunctional 3D co-culture system for studies of mammary tissue morphogenesis and stem cell biology. PLoS One 6:e25661. https://doi.org/10.1371/journal.pone.0025661
  • Cao H, Lee MKH, Yang H et al (2019) Mechanoregulation of cancer-associated fibroblast phenotype in three-dimensional interpenetrating hydrogel networks. Langmuir 35:7487–7495. https://doi.org/10.1021/acs.langmuir.8b02649
  • Casey J, Yue X, Nguyen TD et al (2017) 3D hydrogel-based microwell arrays as a tumor microenvironment model to study breast cancer growth. Biomed Mater 12:025009. https://doi.org/10.1088/1748-605X/aa5d5c
  • Cassereau L, Miroshnikova YA, Ou G et al (2015) A 3D tension bioreactor platform to study the interplay between ECM stiffness and tumor phenotype. J Biotechnol 193:66–69. https://doi.org/10.1016/j.jbiotec.2014.11.008
  • Cavo M, Caria M, Pulsoni I et al (2018) A new cell-laden 3D Alginate-Matrigel hydrogel resembles human breast cancer cell malignant morphology, spread and invasion capability observed “in vivo”. Sci Rep 8:5333. https://doi.org/10.1038/s41598-018-23250-4
  • Chapla R, Abed MA, West J (2020) Modulating functionalized poly(Ethylene glycol) diacrylate hydrogel mechanical properties through competitive crosslinking mechanics for soft tissue applications. Polymers (Basel) 12:1–16. https://doi.org/10.3390/polym12123000
  • Chen P, Huang Y, Bong R et al (2011) Tumor-associated macrophages promote angiogenesis and melanoma growth via adrenomedullin in a paracrine and autocrine manner. Clin Cancer Res 17:7230–7239. https://doi.org/10.1158/1078-0432.CCR-11-1354
  • Chew V, Toh HC, Abastado JP (2012) Immune microenvironment in tumor progression: characteristics and challenges for therapy. J Oncol 2012. https://doi.org/10.1155/2012/608406
  • Chia J, Miki T, Mihara H, Tsutsumi H (2021) Biofunctional supramolecular hydrogels fabricated from a short self-assembling peptide modified with bioactive sequences for the 3D culture of breast cancer MCF-7 cells. Bioorg Med Chem 46:116345. https://doi.org/10.1016/j.bmc.2021.116345
  • Chiche J, Brahimi-Horn MC, Pouysségur J (2010) Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med 14:771–794. https://doi.org/10.1111/j.1582-4934.2009.00994.x
  • Chowdhury SR, Busra MFM, Lokanathan Y et al (2018) Collagen type I: a versatile biomaterial. In: Chun H, Park K, Kim C, Khang G (eds) Novel biomaterials for regenerative medicine, advances in experimental medicine and biology, 1077th edn. Springer Nature, Singapore, pp 389–414
  • Chuang C, Lin R, Melero-Martin J, Chen Y (2018) Comparison of covalently and physically cross-linked collagen hydrogels on mediating vascular network formation for engineering adipose tissue. Artif Cell Nanomed B 46:S434–S447. https://doi.org/10.1080/21691401.2018.1499660
  • Clough H, O’Brien M, Zhu X et al (2021) Neutrally charged self-assembling peptide hydrogel recapitulates in vitro mechanisms of breast cancer progression. Mater Sci Eng C Mater Biol Appl 127:112200. https://doi.org/10.1016/j.msec.2021.112200
  • Cruz-Acuña R, García AJ (2019) Engineered materials to model human intestinal development and cancer using organoids. Exp Cell Res 377:109–114. https://doi.org/10.1016/j.yexcr.2019.02.017
  • Cui H, Esworthy T, Zhou X et al (2020) Engineering a novel 3D printed vascularized tissue model for investigating breast cancer metastasis to bone. Adv Healthc Mater 9:1–11. https://doi.org/10.1002/adhm.201900924
  • Day C, Merlino G, Dyke T (2015) Preclinical mouse cancer models: a maze of opportunities and challenges. Cell 163:39–53. https://doi.org/10.1016/j.cell.2015.08.068
  • del Bufalo F, Manzo T, Hoyos V et al (2016) 3D modeling of human cancer: a PEG-fibrin hydrogel system to study the role of tumor microenvironment and recapitulate the in vivo effect of oncolytic adenovirus. Biomaterials 84:76–85. https://doi.org/10.1016/j.biomaterials.2016.01.030
  • Djabourov M, Leblond J, Papon P (1988) Gelation of aqueous gelatin solutions. I. Structural investigation. J Phys France 49:319–332. https://doi.org/10.1051/jphys:01988004902031900
  • Drost J, Clevers H (2018) Organoids in cancer research. Nat Rev Cancer 18:407–418. https://doi.org/10.1038/s41568-018-0007-6
  • Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360. https://doi.org/10.1146/annurev.immunol.22.012703.104803
  • Dunne LW, Huang Z, Meng W et al (2014) Human decellularized adipose tissue scaffold as a model for breast cancer cell growth and drug treatments. Biomaterials 35:4940–4949. https://doi.org/10.1016/j.biomaterials.2014.03.003
  • Eble JA, Niland S (2019) The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis 36:171–198. https://doi.org/10.1007/s10585-019-09966-1
  • Edmondson R, Jenkins JB, Adcock AF, Yang L (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12:207–218. https://doi.org/10.1089/adt.2014.573
  • Ertekin E, Monavari M, Kruger R et al (2022) 3D hydrogel-based microcapsules as an in vitro model to study tumorigenicity, cell migration and drug resistance. Acta Biomater 142:208–220. https://doi.org/10.1016/j.actbio.2022.02.010
  • Falkenberg N, Höfig I, Rosemann M et al (2016) Three-dimensional microtissues essentially contribute to preclinical validations of therapeutic targets in breast cancer. Cancer Med 5:703–710. https://doi.org/10.1002/cam4.630
  • Fan Q, Liu R, Jiao Y et al (2017) A novel 3-D bio-microfluidic system mimicking in vivo heterogeneous tumour microstructures reveals complex tumour–stroma interactions. Lab Chip 17:2852. https://doi.org/10.1039/c7lc00191f
  • Feng S, Duan X, Lo P-K et al (2013) Expansion of breast cancer stem cells with fibrous scaffolds. Integr Biol 5:768. https://doi.org/10.1039/c3ib20255k
  • Ferlay J, Colombet M, Soerjomataram I et al (2021) Cancer statistics for the year 2020: an overview. Int J Cancer 149:778–789. https://doi.org/10.1002/ijc.33588
  • Ferreira LP, Gaspar VM, Mano JF (2021a) Decellularized extracellular matrix for bioengineering physiomimetic 3D in vitro tumor models. Trends Biotechnol 38:1397–1414. https://doi.org/10.1016/j.tibtech.2020.04.006
  • Ferreira LP, Gaspar VM, Mendes L et al (2021b) Organotypic 3D decellularized matrix tumor spheroids for high-throughput drug screening. Biomaterials 275:120983. https://doi.org/10.1016/j.biomaterials.2021.120983
  • Ferruzzi J, Sun M, Gkousioudi A et al (2019) Compressive remodeling alters fluid transport properties of Collagen networks – implications for tumor growth. Sci Rep 9:17151. https://doi.org/10.1016/j.biomaterials.2016.08.052
  • Fisher SA, Tam RY, Fokina A et al (2018) Photo-immobilized EGF chemical gradients differentially impact breast cancer cell invasion and drug response in defined 3D hydrogels. Biomaterials 178:751–766. https://doi.org/10.1016/j.biomaterials.2018.01.032
  • Fong ELS, Harrington DA, Farach-Carson MC, Yu H (2016) Heralding a new paradigm in 3D tumor modeling. Biomaterials 108:197–213. https://doi.org/10.1016/j.biomaterials.2016.08.052
  • Freeman FE, Kelly DJ (2017) Tuning alginate Bioink stiffness and composition for controlled growth factor delivery and to spatially direct MSC fate within bioprinted tissues. Sci Rep 7:17042. https://doi.org/10.1038/s41598-017-17286-1
  • Fridman IB, Kostas J, Gregus M et al (2021) High-throughput microfluidic 3D biomimetic model enabling quantitative description of the human breast tumor microenvironment. Acta Biomater 132:473–488. https://doi.org/10.1016/j.actbio.2021.06.025
  • García-Gareta E, Pérez MÁ, García-Aznar JM (2022) Decellularization of tumours: a new frontier in tissue engineering. J Tissue Eng 13:204173142210916. https://doi.org/10.1177/20417314221091682
  • González-Díaz E, Varghese S (2016) Hydrogels as extracellular matrix analogs. Gels 2:20. https://doi.org/10.3390/gels2030020
  • Guarnieri D, de Capu A, Ventre M et al (2010) Covalently immobilized RGD gradient on PEG hydrogel scaffold influences cell migration parameters. Acta Biomater 6:2532–2539. https://doi.org/10.1016/j.actbio.2009.12.050
  • Gustafsson A, Garre E, Leiva MC et al (2021) Patient-derived scaffolds as a drug-testing platform for endocrine therapies in breast cancer. Sci Rep 11:13334. https://doi.org/10.1038/s41598-021-92724-9
  • Hainline KM, Gu F, Handley JF et al (2019) Self-assembling peptide gels for 3D prostate cancer spheroid culture. Macromol Biosci 19:1–9. https://doi.org/10.1002/mabi.201800249
  • Harbeck N, Penault-Llorca F, Cortes J et al (2019) Breast cancer. Nat Rev Dis Primers 5:66. https://doi.org/10.1038/s41572-019-0111-2
  • Hielscher AC, Qiu C, Gerecht S (2012) Breast cancer cell-derived matrix supports vascular morphogenesis. Am J Physiol Cell Physiol 302:C1243–C1256. https://doi.org/10.1152/ajpcell.00011.2012
  • Holen I, Speirs V, Morrissey B, Blyth K (2017) In vivo models in breast cancer research: progress, challenges and future directions. Dis Model Mech 10:359–371. https://doi.org/10.1242/dmm.028274
  • Holle AW, Young JL, Spatz JP (2016) In vitro cancer cell-ECM interactions inform in vivo cancer treatment. Adv Drug Deliv Rev 97:270–227. https://doi.org/10.1016/j.addr.2015.10.007
  • Hong S, Song JM (2022) 3D bioprinted drug-resistant breast cancer spheroids for quantitative in situ evaluation of drug resistance. Acta Biomater 138:228–239. https://doi.org/10.1016/j.actbio.2021.10.031
  • Hoshiba T, Tanaka M (2013) Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages. Biochem Biophys Res Commun 439:291–296. https://doi.org/10.1016/j.bbrc.2013.08.038
  • Hou G, Sun T, Qian J et al (2021) Hydroxyethyl chitosan hydrogels for enhancing breast cancer cell tumorigenesis. Int J Biol Macromol 184:768–775. https://doi.org/10.1016/j.ijbiomac.2021.06.110
  • Huang H, Ding Y, Sun XS, Nguyen TA (2013) Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells. PLoS One 8:1–13. https://doi.org/10.1371/journal.pone.0059482
  • Hughes CS, Postovit LM, Lajoie GA (2010) Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10:1886–1890. https://doi.org/10.1002/pmic.200900758
  • Humayun M, Ayuso JM, Brenneke RA et al (2021) Elucidating cancer-vascular paracrine signaling using a human organotypic breast cancer cell extravasation model. Biomaterials 270:120640. https://doi.org/10.1016/j.biomaterials.2020.120640
  • Huynh RN, Yousof M, Ly KL et al (2020) Microstructural densification and alignment by aspiration-ejection influence cancer cell interactions with three-dimensional collagen networks. Biotechnol Bioeng:1–13. https://doi.org/10.1002/bit.27308
  • Insua-Rodríguez J, Oskarsson T (2016) The extracellular matrix in breast cancer. Adv Drug Deliv Rev 97:41–55. https://doi.org/10.1016/j.addr.2015.12.017
  • Jackson S, Thomas G (2017) Human tissue models in cancer research: looking beyond the mouse. Dis Model Mech 10:939–942. https://doi.org/10.1242/dmm.031260
  • Jafari M, Paknejad Z, Rad MR et al (2017) Polymeric scaffolds in tissue engineering: a literature review. J Biomed Mater Res B Appl Biomater 105:431–459
  • James-Bhasin M, Siegel PM, Nazhat SN (2018) A three-dimensional dense collagen hydrogel to model cancer cell/osteoblast interactions. J Funct Biomater 9:72. https://doi.org/10.3390/jfb9040072
  • Jena MK, Janjanam J (2018) Role of extracellular matrix in breast cancer development: a brief update. F1000Res 7:274. https://doi.org/10.12688/f1000research.14133.2
  • Jensen A, Horton E, Blicher L et al (2021) Organ-specific, fibroblast-derived matrix as a tool for studying breast cancer metastasis. Cancers (Basel) 13:3331. https://doi.org/10.3390/cancers13133331
  • Jeong SY, Lee JH, Shin Y et al (2016) Co-culture of tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment. PLoS One 11:1–17. https://doi.org/10.1371/journal.pone.0159013
  • Jian H, Wang M, Dong Q et al (2019) Dipeptide self-assembled hydrogels with tunable mechanical properties and degradability for 3D bioprinting. ACS Appl Mater Interfaces 11:46419–46426. https://doi.org/10.1021/acsami.9b13905
  • Jiang T, Munguia-Lopez J, Flores-Torres S et al (2018) Bioprintable alginate/gelatin hydrogel 3D in vitro model systems induce cell spheroid formation. J Vis Exp 2018:1–11. https://doi.org/10.3791/57826
  • Jiang T, Munguia-Lopez JG, Gu K et al (2020) Engineering bioprintable alginate/gelatin composite hydrogels with tunable mechanical and cell adhesive properties to modulate tumor spheroid growth kinetics. Biofabrication 12:015024. https://doi.org/10.1088/1758-5090/ab3a5c
  • Jin Q, Liu G, Li S et al (2019) Decellularized breast matrix as bioactive microenvironment for in vitro three-dimensional cancer culture. J Cell Physiol 234:3425–3435. https://doi.org/10.1002/jcp.26782
  • Jin M, Shi J, Zhu W et al (2021) Polysaccharide-based biomaterials in tissue engineering: a review. Tissue Eng Part B Rev 27:604–626. https://doi.org/10.1089/ten.teb.2020.0208
  • Kadri R, Bacharouch J, Elkhoury K et al (2020) Role of active nanoliposomes in the surface and bulk mechanical properties of hybrid hydrogels. Mater Today Bio 6:100046. https://doi.org/10.1016/j.mtbio.2020.100046
  • Kaemmerer E, Melchels FPW, Holzapfel BM et al (2014) Gelatine methacrylamide-based hydrogels: an alternative three-dimensional cancer cell culture system. Acta Biomater 10:2551–2562. https://doi.org/10.1016/j.actbio.2014.02.035
  • Kamatar A, Gunay G, Acar H (2020) Natural and synthetic biomaterials for engineering multicellular tumor spheroids. Polymers (Basel) 12:1–23
  • Kang J, Lee DW, Hwang HJ et al (2016) Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids. Lab Chip 16:2265–2276. https://doi.org/10.1039/C6LC00526H
  • Kaphle P, Li Y, Yao L (2019) The mechanical and pharmacological regulation of glioblastoma cell migration in 3D matrices. J Cell Physiol 234:3948–3960. https://doi.org/10.1002/jcp.27209
  • Kaushik S, Pickup MW, Weaver VM (2016) From transformation to metastasis: deconstructing the extracellular matrix in breast cancer. Cancer Metastasis Rev 35:655–667. https://doi.org/10.1007/s10555-016-9650-0
  • Khoo AS, Valentin TM, Leggett SE et al (2019) Breast cancer cells transition from mesenchymal to amoeboid migration in tunable three-dimensional silk-collagen hydrogels. ACS Biomater Sci Eng 5:4341–4354. https://doi.org/10.1021/acsbiomaterials.9b00519
  • Knight E, Przyborski S (2015) Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J Anat 227:746–756. https://doi.org/10.1111/joa.12257
  • Kumar P, Satyam A, Cigognini D et al (2018) Low oxygen tension and macromolecular crowding accelerate extracellular matrix deposition in human corneal fibroblast culture. Tissue Eng Regen Med 12:6–18. https://doi.org/10.1002/term.2283
  • Kwak T, Lee E (2020) In vitro modeling of solid tumor interactions with perfused blood vessels. Sci Rep 10:20142. https://doi.org/10.1038/s41598-020-77180-1
  • Landberg G, Fitzpatrick P, Isakson P, Jonasson E, Karlsson J, Larsson E, Svanström A, Rafnsdottir S, Persson E, Gustafsson A, Andersson D, Rosendahl J, Petronis S, Ranji P, Gregersson P, Magnusson Y, Håkansson J, Ståhlberg A (2020) Patient-derived scaffolds uncover breast cancer promoting properties of the microenvironment. Biomaterials 235:119705. https://doi.org/10.1016/j.biomaterials.2019.119705
  • Le MN, Xu K, Wang Z et al (2021) Evaluation of the effect of 3D porous Chitosan-alginate scaffold stiffness on breast cancer proliferation and migration. J Biomed Mater Res A 109:1990–2000. https://doi.org/10.1002/jbm.a.37191
  • Lee JY, Chaudhuri O (2018) Regulation of breast cancer progression by extracellular matrix mechanics: insights from 3D culture models. ACS Biomater Sci Eng 4:302–313. https://doi.org/10.1021/acsbiomaterials.7b00071
  • Leek R, Grimes D, Harris A, McIntyre A (2016) Using three-dimensional culture (spheroids) as an in vitro model of tumour hypoxia. Adv Exp Med Biol 899:167–196. https://doi.org/10.1007/978-3-319-26666-4_10
  • Lei X, Lei Y, Li J et al (2020) Immune cells within the tumor microenvironment: biological functions and roles in cancer immunotherapy. Cancer Lett 470:126–133. https://doi.org/10.1016/j.canlet.2019.11.009
  • Leiva MC, Garre E, Gustafsson A et al (2021) Breast cancer patient-derived scaffolds as a tool to monitor chemotherapy responses in human tumor microenvironments. J Cell Physiol 236:4709–4724. https://doi.org/10.1002/jcp.30191
  • Li W, Hu X, Wang S et al (2019) Multiple comparisons of three different sources of biomaterials in the application of tumor tissue engineering in vitro and in vivo. Int J Biol Macromol 130:166–176. https://doi.org/10.1016/j.ijbiomac.2019.02.136
  • Li JJ, Tsang JY, Tse GM (2021a) Tumor microenvironment in breast cancer—Updates on therapeutic implications and pathologic assessment. Cancers (Basel) 13:4233
  • Li Y, Khuu N, Prince E et al (2021b) Matrix stiffness-regulated growth of breast tumor spheroids and their response to chemotherapy. Biomacromolecules 22:419–429. https://doi.org/10.1021/acs.biomac.0c01287
  • Liang M, Lei F, Liu Y et al (2021) In situ formation of Microgel array via patterned electrospun nanofibers promotes 3D cell culture and drug testing in a microphysiological system. ACS Appl Bio Mater 4:6209–6218. https://doi.org/10.1021/acsabm.1c00534
  • Lin S, Gu L (2015) Influence of crosslink density and stiffness on mechanical properties of type I collagen gel. Materials 8:551–560. https://doi.org/10.3390/ma8020551
  • Lin F, Yu J, Tang W et al (2013) Peptide-functionalized oxime hydrogels with tunable mechanical properties and gelation behavior. Biomacromolecules 14:3749–3758. https://doi.org/10.1021/bm401133r
  • Liu C, Lewin Mejia D, Chiang B et al (2018) Hybrid collagen alginate hydrogel as a platform for 3D tumor spheroid invasion. Acta Biomater 75:213–225. https://doi.org/10.1016/j.actbio.2018.06.003
  • Liu C, Chiang B, Lewin Mejia D et al (2019a) Mammary fibroblasts remodel fibrillar collagen microstructure in a biomimetic nanocomposite hydrogel. Acta Biomater 83:221–232. https://doi.org/10.1016/j.actbio.2018.11.010
  • Liu G, Wang B, Li S et al (2019b) Human breast cancer decellularized scaffolds promote epithelial-to-mesenchymal transitions and stemness of breast cancer cells in vitro. J Cell Physiol 234:9447–9456. https://doi.org/10.1002/jcp.27630
  • Liu C, Li M, Liu C et al (2021) Heterogeneous microenvironmental stiffness regulates pro-metastatic functions of breast cancer cells. Acta Biomater 131:326–340. https://doi.org/10.1016/j.actbio.2021.07.009
  • Livingston MK, Morgan MM, Daly WT et al (2019) Evaluation of PEG-based hydrogel influence on estrogen-receptor-driven responses in MCF7 breast cancer cells. ACS Biomater Sci Eng 5:6089–6098. https://doi.org/10.1021/acsbiomaterials.9b00480
  • Lovitt CJ, Shelper TB, Avery VM (2018) Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins. BMC Cancer 18:41. https://doi.org/10.1186/s12885-017-3953-6
  • Lü WD, Zhang L, Wu CL et al (2014) Development of an acellular tumor extracellular matrix as a three-dimensional scaffold for tumor engineering. PLoS One 9. https://doi.org/10.1371/journal.pone.0103672
  • Lugo-Cintron K, Ayuso J, White B et al (2020) Matrix density drives 3D organotypic lymphatic vessel activation in a microfluidic model of the breast tumor microenvironment. Lab Chip 20:1586. https://doi.org/10.1039/D0LC00099J
  • Macdougall LJ, Wiley KL, Kloxin AM, Dove AP (2018) Design of synthetic extracellular matrices for probing breast cancer cell growth using robust cyctocompatible nucleophilic thiol-yne addition chemistry. Biomaterials. https://doi.org/10.1016/j.biomaterials.2018.04.046
  • Mantha S, Pillai S, Khayambashi P et al (2019) Smart hydrogels in tissue engineering and regenerative medicine. Materials 12:3323. https://doi.org/10.3390/ma12203323
  • Mehta G, Hsiao AY, Ingram M et al (2012) Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release 164:192–204. https://doi.org/10.1016/j.jconrel.2012.04.045
  • Melissaridou S, Wiechec E, Magan M et al (2019) The effect of 2D and 3D cell cultures on treatment response, EMT profile and stem cell features in head and neck cancer. Cancer Cell Int 19:16. https://doi.org/10.1186/s12935-019-0733-1
  • Mi K, Wang G, Liu Z et al (2009) Influence of a self-assembling peptide, RADA16, compared with collagen I and matrigel on the malignant phenotype of human breast-cancer cells in 3D cultures and in vivo. Macromol Biosci 9:437–443. https://doi.org/10.1002/mabi.200800262
  • Miroshnikova YA, Jorgens DM, Spirio L et al (2011) Engineering strategies to recapitulate epithelial morphogenesis within synthetic three-dimensional extracellular matrix with tunable mechanical properties. Phys Biol 8:026013. https://doi.org/10.1088/1478-3975/8/2/026013
  • Mohan SC, Lee TY, Giuliano AE, Cui X (2021) Current status of breast organoid models. Front Bioeng Biotechnol 9:745943
  • Mollica PA, Booth-Creech EN, Reid JA, Zamponi M, Sullivan SM, Palmer X-L, Sachs PC, Bruno RD (2019) 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Acta Biomater 95:201–213. https://doi.org/10.1016/j.actbio.2019.06.017
  • Monteiro M, Gaspar VM, Ferreira LP, Mano JF (2020) Hydrogel 3D in vitro tumor models for screening cell aggregation mediated drug response. Biomater Sci 8:1855–1864
  • Nguyen T, Tran V, Pudasaini S et al (2021) Large-scale fabrication of 3D scaffold-based patterns of microparticles and breast cancer cells using reusable acoustofluidic device. Adv Eng Mater 23:2001377. https://doi.org/10.1002/adem.202001377
  • Nichol J, Koshy S, Bae H et al (2010) Cell-laden microengineered gelatine methacrylate hydrogels. Biomaterials 31:5536–5544. https://doi.org/10.1016/j.biomaterials.2010.03.064
  • Northcott JM, Dean IS, Mouw JK, Weaver VM (2018) Feeling stress: the mechanics of cancer progression and aggression. Front Cell Dev Biol 6:17. https://doi.org/10.3389/fcell.2018.00017
  • Nunes AS, Barros AS, Costa EC et al (2019) 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol Bioeng 116:206–226. https://doi.org/10.1002/bit.26845
  • Ovadia EM, Pradhan L, Sawicki LA et al (2020) Understanding ER+ breast cancer dormancy using bioinspired synthetic matrices for long-term 3D culture and insights into late recurrence. Adv Biosyst 4:2000119. https://doi.org/10.1002/adbi.202000119
  • Palomeras S, Rabionet M, Ferrer I et al (2016) Breast cancer stem cell culture and enrichment using poly(ϵ-caprolactone) scaffolds. Molecules 21:537. https://doi.org/10.3390/molecules21040537
  • Peela N, Sam FS, Christenson W et al (2016) A three dimensional micropatterned tumor model for breast cancer cell migration studies. Biomaterials 81:72–83. https://doi.org/10.1016/j.biomaterials.2015.11.039
  • Pereira RF, Sousa A, Barrias CC et al (2018) A single-component hydrogel bioink for bioprinting of bioengineered 3D constructs for dermal tissue engineering. Mater Horiz 5:1100–1111. https://doi.org/10.1039/c8mh00525g
  • Place AE, Jin Huh S, Polyak K (2011) The microenvironment in breast cancer progression: biology and implications for treatment. Breast Cancer Res 13:227. https://doi.org/10.1186/bcr2912
  • Plou J, Juste-Lanas Y, Olivares V et al (2018) From individual to collective 3D cancer dissemination: roles of collagen concentration and TGF-β. Sci Rep 8:12723. https://doi.org/10.1038/s41598-018-30683-4
  • Polacheck WJ, German AE, Mammoto A et al (2014) Mechanotransduction of fluid stresses governs 3D cell migration. Proc Natl Acad Sci U S A 111:2447–2452. https://doi.org/10.1073/pnas.1316848111
  • Ponomarev AV, Shubina IZ (2019) Insights into mechanisms of tumor and immune system interaction: association with wound healing. Front Oncol 9:1–16. https://doi.org/10.3389/fonc.2019.01115
  • Pradhan S, Clary JM, Seliktar D, Lipke EA (2017) A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres. Biomaterials 115:141–154. https://doi.org/10.1016/j.biomaterials.2016.10.052
  • Prince E, Kheiri S, Wang Y et al (2022) Microfluidic arrays of breast tumor spheroids for drug screening and personalized cancer therapies. Adv Healthcare Mater 11:2101085. https://doi.org/10.1002/adhm.202101085
  • Puerta Cavanzo N, Bigaeva E, Boersema M et al (2021) Macromolecular crowding as a tool to screen anti-fibrotic drugs: the scar-in-a-jar system revisited. Front Med 7:615774. https://doi.org/10.3389/fmed.2020.615774
  • Quail D, Joyce J (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437. https://doi.org/10.1038/nm.3394
  • Quarta A, Gallo N, Vergara D et al (2021) Investigation on the composition of agarose–collagen I blended hydrogels as matrices for the growth of spheroids from breast cancer cell lines. Pharmaceutics 13:963. https://doi.org/10.3390/pharmaceutics13070963
  • Rabie AMI, Ali ASM, Al-Zeer MA et al (2022) Spontaneous formation of 3D breast cancer tissues on electrospun chitosan/poly(ethylene oxide) nanofibrous scaffolds. ACS Omega 7:2114–2126. https://doi.org/10.1021/acsomega.1c05646
  • Rhein-Knudsen N, Ale MT, Ajalloueian F, Meyer AS (2017) Characterization of alginates from Ghanaian brown seaweeds: Sargassum spp. and Padina spp. Food Hydrocoll 71:236–244. https://doi.org/10.1016/j.foodhyd.2017.05.016
  • Riching KM, Cox BL, Salick MR et al (2015) 3D collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys J 107:2546–2558. https://doi.org/10.1016/j.bpj.2014.10.035
  • Riffle S, Hegde R (2017) Modeling tumor cell adaptations to hypoxia in multicellular tumor spheroids. J Exp Clin Cancer Res 36:102. https://doi.org/10.1186/s13046-017-0570-9
  • Rijal G, Li W (2017) A versatile 3D tissue matrix scaffold system for tumor modeling and drug screening. Sci Adv 3:e1700764. https://doi.org/10.1126/sciadv.1700764
  • Risom T, Glass D, Averbukh I et al (2022) Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma. Cell 185:299–310.e18. https://doi.org/10.1016/j.cell.2021.12.023
  • Rubi-Sans G, Castaño O, Cano I et al (2020) Engineering cell-derived matrices: from 3D models to advanced personalized therapies. Adv Funct Mater 30:2000496
  • Rubí-Sans G, Cano-Torres I, Pérez-Amodio S et al (2021a) Development and angiogenic potential of cell-derived microtissues using microcarrier-template. Biomedicines 9:232. https://doi.org/10.3390/biomedicines9030232
  • Rubí-Sans G, Nyga A, Rebollo E et al (2021b) Development of cell-derived matrices for three-dimensional in vitro cancer cell models. ACS Appl Mater Interfaces 13:44108–44123. https://doi.org/10.1021/acsami.1c13630
  • Ruedinger F, Lavrentieva A, Blume C et al (2015) Hydrogels for 3D mammalian cell culture: a starting guide for laboratory practice. Appl Microbiol Biotechnol 99:623–636. https://doi.org/10.1007/s00253-014-6253-y
  • Russell S, Wojtkowiak J, Neilson A, Gillies RJ (2017) Metabolic profiling of healthy and cancerous tissues in 2D and 3D. Sci Rep 7:15285. https://doi.org/10.1038/s41598-017-15325-5
  • Ruud KF, Hiscox WC, Yu I et al (2020) Distinct phenotypes of cancer cells on tissue matrix gel. Breast Cancer Res 22:82. https://doi.org/10.1186/s13058-020-01321-7
  • Sahni A, Simpson-Haidaris P, Sahni S et al (2008) Fibrinogen synthesized by cancer cells augments the proliferative effect of fibroblast growth factor-2 (FGF-2). J Thromb Haemost 6:176–183. https://doi.org/10.1111/j.1538-7836.2007.02808.x
  • Sahoo SK, Panda AK, Labhasetwar V (2005) Characterization of porous PLGA/PLA microparticles as a scaffold for three dimensional growth of breast cancer cells. Biomacromolecules 6:1132–1139. https://doi.org/10.1021/bm0492632
  • Saini H, Rahmani Eliato K, Silva C et al (2018) The role of desmoplasia and stromal fibroblasts on anti-cancer drug resistance in a microengineered tumor model. Cell Mol Bioeng 11:419–433. https://doi.org/10.1007/s12195-018-0544-9
  • Saldin LT, Cramer MC, Velankar SS et al (2017) Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater 49:1–15. https://doi.org/10.1016/j.actbio.2016.11.068
  • Sheikholeslam M, Wheeler SD, Duke KG et al (2018) Peptide and peptide-carbon nanotube hydrogels as scaffolds for tissue & 3D tumor engineering. Acta Biomater 69:107–119. https://doi.org/10.1016/j.actbio.2017.12.012
  • Shekhar MP, Werdell J, Santner SJ et al (2001) Breast stroma plays a dominant regulatory role in breast epithelial growth and differentiation: implications for tumor development and progression. Cancer Res 61:1320–1326
  • Sim J, Lee HJ, Jeong B, Park MH (2021) Poly(ethylene glycol)-poly(l-Alanine)/hyaluronic acid complex as a 3D platform for understanding cancer cell migration in the tumor microenvironment. Polymers (Basel) 13:1042. https://doi.org/10.3390/polym13071042
  • Sivakumar S, Schmid R, Wieland A et al (2022) Role of fiber thickness and surface treatment of electrospun polycaprolactone matrices on the growth of different breast cancer-associated cells. Adv Mater Interfaces 9:2101808. https://doi.org/10.1002/admi.202101808
  • Soman P, Kelber JA, Lee JW et al (2012) Cancer cell migration within 3D layer-by-layer microfabricated photocrosslinked PEG scaffolds with tunable stiffness. Biomaterials 33:7064–7070. https://doi.org/10.1016/j.biomaterials.2012.06.012
  • Song H, Han YZ, Cai GH et al (2015) The effects of self-assembling peptide RADA16 hydrogel on malignant phenotype of human hepatocellular carcinoma cell. Int J Clin Exp Med 8:14906–14915. https://doi.org/14906-15. eCollection 2015
  • Sontheimer-Phelps A, Hassell BA, Ingber DE (2019) Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer 19:65–81. https://doi.org/10.1038/s41568-018-0104-6
  • Stowers RS, Allen SC, Sanchez K et al (2017) Extracellular matrix stiffening induces a malignant phenotypic transition in breast epithelial cells. Cell Mol Bioeng 10:114–123. https://doi.org/10.1007/s12195-016-0468-1
  • Su K, Wang C (2015) Recent advances in the use of gelatin in biomedical research. Biotechnol Lett 37:2139–2145. https://doi.org/10.1007/s10529-015-1907-0
  • Su S, Chen J, Yao H et al (2018) CD10(+)GPR77(+) cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 172:841–856. https://doi.org/10.1016/j.cell.2018.01.009
  • Subbiah R, Hwang MP, Du P et al (2016) Tunable crosslinked cell-derived extracellular matrix guides cell fate. Macromol Biosci 16:1723–1734. https://doi.org/10.1002/mabi.201600280
  • Sun W, Lim CT, Kurniawan NA (2014) Mechanistic adaptability of cancer cells strongly affects anti-migratory drug efficacy. J R Soc Interface 11:20140638
  • Svanström A, Rosendahl J, Salerno S et al (2021) Optimized alginate-based 3D printed scaffolds as a model of patient derived breast cancer microenvironments in drug discovery. Biomed Mater 16:045046. https://doi.org/10.1088/1748-605X/ac0451
  • Swaminathan S, Hamid Q, Sun W, Clyne AM (2019) Bioprinting of 3D breast epithelial spheroids for human cancer models. Biofabrication 11:025003. https://doi.org/10.1088/1758-5090/aafc49
  • Szot CS, Buchanan CF, Freeman JW, Rylander MN (2011) 3D in vitro bioengineered tumors based on collagen I hydrogels. Biomaterials 32:7905–7912. https://doi.org/10.1016/j.biomaterials.2011.07.001
  • Szot CS, Buchanan CF, Freeman JW, Rylander MN (2013) In vitro angiogenesis induced by tumor-endothelial cell co-culture in bilayered, collagen I hydrogel bioengineered tumors. Tissue Eng Part C Methods 19:864–874
  • Tamayo-Angorrilla M, López de Andrés J, Jiménez G, Marchal JA (2021) The biomimetic extracellular matrix: a therapeutic tool for breast cancer research. Transl Res. https://doi.org/10.1016/j.trsl.2021.11.008
  • Tang C, Jin C, Xu Y et al (2016) Chondrogenic differentiation could be induced by autologous bone marrow mesenchymal stem cell-derived extracellular matrix scaffolds without exogenous growth factor. Tissue Eng Part A 22:222–232. https://doi.org/10.1089/ten.tea.2014.0491
  • Taubenberger AV, Bray LJ, Haller B et al (2016) 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments. Acta Biomater 36:73–85. https://doi.org/10.1016/j.actbio.2016.03.017
  • Teixeira FC, Chaves S, Torres AL et al (2021) Engineering a vascularized 3D hybrid system to model tumor-stroma interactions in breast cancer. Front Bioeng Biotechnol 9:647031. https://doi.org/10.3389/fbioe.2021.647031
  • Terzopoulou Z, Zamboulis A, Koumentakou I et al (2022) Biocompatible synthetic polymers for tissue engineering purposes. Biomacromolecules 23:1841–1863. https://doi.org/10.1021/acs.biomac.2c00047
  • Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK (2016) Extracellular matrix structure. Adv Drug Deliv Rev 97:4–27. https://doi.org/10.1016/j.addr.2015.11.001
  • Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103:655–663. https://doi.org/10.1002/bit.22361
  • Unnikrishnan K, Thomas LV, Ram Kumar RM (2021) Advancement of scaffold-based 3D cellular models in cancer tissue engineering: an update. Front Oncol 11:733652
  • Valente KP, Thind SS, Akbari M et al (2019) Collagen type I-gelatin methacryloyl composites: mimicking the tumor microenvironment. ACS Biomater Sci Eng 5:2887–2898. https://doi.org/10.1021/acsbiomaterials.9b00264
  • van den Bulcke A, Bogdanov B, de Rooze N et al (2000) Structural and rheological properties of methacrylamide modified gelatine hydrogels. Biomacromolecules 1:31–38. https://doi.org/10.1021/bm990017d
  • Vasudevan J, Lim C, Fernandez J (2020) Cell migration and breast cancer metastasis in biomimetic extracellular matrices with independently tunable stiffness. Adv Funct Mater 30:2005383. https://doi.org/10.1002/adfm.202005383
  • Vikicevic S, Kleznman HK, Luyten FP et al (1992) Identification of multiple active growth factors in basement membrane matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp Cell Res 202:1–8. https://doi.org/10.1016/0014-4827(92)90397-q
  • Vinson BT, Phamduy TB, Shipman J et al (2017) Laser direct-write based fabrication of a spatially-defined, biomimetic construct as a potential model for breast cancer cell invasion into adipose tissue. Biofabrication 9:025013. https://doi.org/10.1088/1758-5090/aa6bad
  • Wang JC, Tu Q, Wang Y et al (2013) Pneumatic mold-aided construction of a three-dimensional hydrogel microvascular network in an integrated microfluidics and assay of cancer cell adhesion onto the endothelium. Microfluidics Nanofluidics 15:519–532. https://doi.org/10.1007/s10404-013-1172-2
  • Wang M, Yang Y, Han L et al (2020) Effect of three-dimensional ECM stiffness on cancer cell migration through regulating cell volume homeostasis. Biochem Biophys Res Commun 528:459–465. https://doi.org/10.1016/j.bbrc.2020.05.182
  • Wang J, Xu W, Qian J et al (2022) Photo-crosslinked hyaluronic acid hydrogel as a biomimic extracellular matrix to recapitulate in vivo features of breast cancer cells. Colloids Surf B Biointerfaces 209:112159. https://doi.org/10.1016/j.colsurfb.2021.112159
  • WHO (2021) Cancer key facts. https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 5 Apr 2021
  • Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z (2020) Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun 11:5120. https://doi.org/10.1038/s41467-020-18794-x
  • Wishart AL, Conner SJ, Guarin JR et al (2020) Decellularized extracellular matrix scaffolds identify full-length collagen VI as a driver of breast cancer cell invasion in obesity and metastasis. Sci Adv 6:eabc3175. https://doi.org/10.1126/sciadv.abc3175
  • Włodarczyk-Biegun MK, del Campo A (2017) 3D bioprinting of structural proteins. Biomaterials 134:180–201. https://doi.org/10.1016/j.biomaterials.2017.04.019
  • Woods K, Thigpen C, Wang JP et al (2017) Mechanically tuned 3 dimensional hydrogels support human mammary fibroblast growth and viability. BMC Cell Biol 18:1–17. https://doi.org/10.1186/s12860-017-0151-y
  • Worthington P, Pochan DJ, Langhans SA (2015) Peptide hydrogels – versatile matrices for 3D cell culture in cancer medicine. Front Oncol 5:1–10. https://doi.org/10.3389/fonc.2015.00092
  • Worthington P, Drake KM, Li Z et al (2017) Beta-hairpin hydrogels as scaffolds for high-throughput drug discovery in three-dimensional cell culture. Anal Biochem 535:25–34. https://doi.org/10.1016/j.ab.2017.07.024
  • Wu T, Dai Y (2017) Tumor microenvironment and therapeutic response. Cancer Letters 387:61–68. https://doi.org/10.1016/j.canlet.2016.01.043
  • Wu Z, Gong Z, Ao Z et al (2020) Rapid microfluidic formation of uniform patient-derived breast tumor spheroids. ACS Appl Bio Mater 3:6273–6283. https://doi.org/10.1021/acsabm.0c00768
  • Wüst S, Müller R, Hofmann S (2011) Controlled positioning of cells in biomaterials—approaches towards 3D tissue printing. J Funct Biomater 2:119–154. https://doi.org/10.3390/jfb2030119
  • Xu W, Qian J, Zhang Y et al (2016) A double-network poly(Nɛ-acryloyl l-lysine)/hyaluronic acid hydrogel as a mimic of the breast tumor microenvironment. Acta Biomater 33:131–141. https://doi.org/10.1016/j.actbio.2016.01.027
  • Xu H, Lyu X, Yi M et al (2018) Organoid technology and applications in cancer research. J Hematol Oncol 11:116
  • Xu S, Xu H, Wang W et al (2019) The role of collagen in cancer: from bench to bedside. J Transl Med 17:309. https://doi.org/10.1186/s12967-019-2058-1
  • Xu C, Hung C, Cao Y, Liu HH (2021) Tunable crosslinking, reversible phase transition, and 3D printing of hyaluronic acid hydrogels via dynamic coordination of innate carboxyl groups and metallic ions. ACS Appl Bio Mater 4:2408–2428. https://doi.org/10.1021/acsabm.0c01300
  • Yan LP, Silva-Correia J, Ribeiro VP et al (2016) Tumor growth suppression induced by biomimetic silk fibroin hydrogels. Sci Rep 6:1–11. https://doi.org/10.1038/srep31037
  • Yang Z, Zhao X (2011) A 3D model of ovarian cancer cell lines on peptide nanofiber scaffold to explore the cell-scaffold interaction and chemotherapeutic resistance of anticancer drugs. Int J Nanomedicine 6:303–310. https://doi.org/10.2147/IJN.S15279
  • Yang X, Sarvestani SK, Moeinzadeh S et al (2013) Effect of CD44 binding peptide conjugated to an engineered inert matrix on maintenance of breast cancer stem cells and tumorsphere formation. PLoS One 8:E59147. https://doi.org/10.1371/journal.pone.0059147
  • Yao J, Li G, Jiao Y et al (2021) Biological gel-based microchamber array for tumor cell proliferation and migration studies in well-controlled biochemical gradients. Lab Chip 21:3004–3018. https://doi.org/10.1039/D0LC00951B
  • Ye M, Mohanty P, Ghosh G (2014) Biomimetic apatite-coated porous PVA scaffolds promote the growth of breast cancer cells. Mater Sci Eng C 44:310–316. https://doi.org/10.1016/j.msec.2014.08.044
  • Yu Y, Shen M, Song Q, Xie J (2018) Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohyd Polym 183:91–101. https://doi.org/10.1016/j.carbpol.2017.12.009
  • Yue X, Nguyen TD, Zellmer V et al (2018) Stromal cell-laden 3D hydrogel microwell arrays as tumor microenvironment model for studying stiffness dependent stromal cell-cancer interactions. Biomaterials 170:37–48. https://doi.org/10.1016/j.biomaterials.2018.04.001
  • Zhao N, Battig MR, Xu M et al (2017a) Development of a dual-functional hydrogel using RGD and anti-VEGF Aptamer. Macromol Biosci 17:1700201. https://doi.org/10.1002/mabi.201700201
  • Zhao Y, Qiao S, Shi S et al (2017b) Modulating three-dimensional microenvironment with hyaluronan of different molecular weights alters breast cancer cell invasion behavior. ACS Appl Mater Interfaces 9:9327–9338. https://doi.org/10.1021/acsami.6b15187
  • Zheng H, Zuo B (2021) Functional silk fibroin hydrogels: preparation, properties and applications. J Mater Chem B 9:1238–1258. https://doi.org/10.1039/D0TB02099K
  • Zhou X, Zhu W, Nowicki M et al (2016) 3D bioprinting a cell-laden bone matrix for breast cancer metastasis study. ACS Appl Mater Interfaces 8:30017–30026. https://doi.org/10.1021/acsami.6b10673
  • Zhou X, Yang A, Huang Z et al (2017) Enhancement of neurite adhesion, alignment and elongation on conductive polypyrrole-poly(lactide acid) fibers with cell-derived extracellular matrix. Colloids Surf B: Biointerfaces 149:217–225. https://doi.org/10.1016/j.colsurfb.2016.10.014