Birch and Swinnerton-Dyer conjectureold and new

  1. Oscar Rivero-Salgado 1
  1. 1 Universitat Politècnica de Catalunya
    info

    Universitat Politècnica de Catalunya

    Barcelona, España

    ROR https://ror.org/03mb6wj31

Revista:
Reports@SCM: an electronic journal of the Societat Catalana de Matemàtiques

ISSN: 2385-4227

Ano de publicación: 2018

Volume: 4

Número: 1

Páxinas: 9-20

Tipo: Artigo

Outras publicacións en: Reports@SCM: an electronic journal of the Societat Catalana de Matemàtiques

Resumo

The Birch and Swinnerton-Dyer (BSD) conjecture is one of the millennium problems that has not been solved yet. Although it was formulated after different numerical experiments, there are several theoretical reasons and analogies with simpler mathematical objects that lead us to believe that it is true. We go through some of these analogies, and at the same time, we explain the most relevant results and generalizations that are currently known. At the end, we move to the rank two situation, recovering the elliptic Stark conjecture, closely related to BSD.Keywords: BSD, elliptic curve, L-series, modular forms, Gross-Zagier Stark conjecture.

Referencias bibliográficas

  • M. Bertolini, F. Castella, H. Darmon, S. Das-gupta, K. Prasanna, and V. Rotger. “p-adicL-functions and Euler systems: a tale in twotrilogies”,Automorphic forms and Galois rep-resentations, Vol. 1, LMS Lecture Notes414Cambridge University Press (2014) 52–102.
  • M. Bertolini, H. Darmon, and V. Rotger,“Beilinson–Flach elements and Euler systemsI: syntomic regulators andp-adic RankinL-series”,J. Algebraic Geometry24(2015), 355–378.
  • M. Bertolini, H. Darmon, and V. Rotger,“Beilinson–Flach elements and Euler systems II:p-adic families and the Birch and Swinnerton-Dyer conjecture”,J. Algebraic Geometry24(2015), 569–604.
  • H. Darmon. “Rational points on modular el-liptic curves”, American Mathematical Society,2004.
  • H. Darmon, A. Lauder, and V. Rotger, “Starkpoints andp-adic iterated integrals attached tomodular forms of weight one”,Forum of Math-ematics, Pi3(2015), 95 pages
  • H. Darmon, A. Lauder, and V. Rotger, “Gross-Stark units andp-adic iterated integrals at-tached to modular forms of weight one”,Ann.Math. Qu ́ebec40(2016), 325–354.
  • H. Darmon and V. Rotger, “Diagonal cyclesand Euler systems I: ap-adic Gross-Zagier for-mula”,Annales Scientifiques de l’Ecole Nor-male Sup ́erieure47(4) (2014), 779–832
  • H. Darmon and V. Rotger, “Elliptic curves ofrank two and generalised Kato classes”, ac-cepted atResearch in Math. Sciences, specialissue in memory of Robert Coleman, (2016).
  • H. Darmon and V. Rotger, “Diagonal cyclesand Euler systems II: the Birch and Swinnerton-Dyer conjecture for Hasse-Weil-ArtinL-series”,Journal of the American Mathematical Society30(3) (2017), 601–672.
  • G. Kings,D. Loeffler,and S.L. Zerbes,“Rankin–Eisenstein classes and explicit reci-procity laws”,Cambridge J. Math5(1) (2017),1–122.
  • B. Mazur, J. Tate, and J. Teitelbaum, “Onp-adic analogues of the conjecture of Birchand Swinnerton-Dyer”,Inventiones Matemati-cae84(1986), 1–49.
  • O. Rivero and V. Rotger, “Derived Beilinson–Flach elements and the arithmetic of the adjointof a modular form”, preprint available at Arxiv.
  • J. Silvermann,“The arithmetic of ellip-tic curves”,Graduate Texts in Mathematics(Springer), 1986