Some New Properties of the Mittag-Leffler Functions and Their Applications to Solvability and Stability of a Class of Fractional Langevin Differential Equations

  1. Hamid Baghani 1
  2. Juan J. Nieto 2
  1. 1 Hakim Sabzevari University
    info

    Hakim Sabzevari University

    Sabzevar, Irán

    ROR https://ror.org/00zyh6d22

  2. 2 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

Revista:
Qualitative theory of dynamical systems

ISSN: 1575-5460

Ano de publicación: 2024

Volume: 23

Número: 1

Tipo: Artigo

Outras publicacións en: Qualitative theory of dynamical systems

Resumo

The paper examines the solvability and stability of a particular set of fractional Langevin equations under anti-periodic boundary conditions. Utilizing the Krasnoselskii fixed point theorem, the Banach contraction mapping theorem, and properties of the Mittag-Leffler function, we establish less stringent criteria for the existence and uniqueness of solutions compared to previous findings in the literature. Furthermore, we present illustrative examples with specific parameters that highlight the reduced conditions necessary for ensuring the existence of a unique solution.

Referencias bibliográficas

  • 1. Ahmad, B., Nieto, J.J., Alsaedi, A., El-Shahed, M.: A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal. Real World Appl. 13, 599–606 (2012)
  • 2. Ahmad, M., Zada, A., Alzabut, J.: Stability analysis of a nonlinear coupled implicit switched singular fractional differential equations with p-Laplacian. Adv. Differ. Equ. 2019, 436 (2019)
  • 3. Ahmad, M., Zada, A., Alzabut, J.: Hyers-Ulam stability of a coupled system of fractional differential equations of Hilfer-Hadamard type. Demonstr. Math. 52, 283–295 (2019)
  • 4. Ali, S.M., Abdo, M.S.: Qualitative analysis for multiterm Langevin systems with generalized caputo fractional operators of different orders. Math. Probl. Eng. (2022). https://doi.org/10.1155/2022/ 1879152
  • 5. Alzabut, J., Abdeljawad, T., Baleanu, D.: Nonlinear delay fractional difference equations with applications on discrete fractional Lotka Volterra competition model. J. Comput. Anal. Appl. 25(5), 889–898 (2018)
  • 6. Babenko, Y.I.: Heat and Mass Transfer. Chemia, Leningrad (1986)
  • 7. Baghani, H.: An analytical improvement of a study of nonlinear Langevin equation involving two fractional orders in different intervals. J. Fixed Point Theory Appl. 21, 95 (2019)
  • 8. Baghani, H., Nieto, J.J.: On fractional Langevin equation involving two fractional orders in different intervals. Nonlinear Anal. Model Control 24, 884–897 (2019)
  • 9. Baghani, H., Nieto, J.J.: Applications of the Mittag-Leffler function in solvability and stability of a class of fractional langevin equations with two fractional orders. J. Anal. (2023). https://doi.org/10. 1007/s41478-023-00669-1
  • 10. Bagley, R. L.: On the fractional order initial value problem and its engineering applications. In: Fractional Calculus and Its Applications (Ed. K. Nishimoto), Tokyo, College of Engineering, Nihon University, 12-20 (1990)
  • 11. Baitiche, Z., Derbazi, C., Matar, M.M.: Ulam stability for nonlinear-Langevin fractional differential equations involving two fractional orders in the ψ-Caputo sense. Appl. Anal. 101, 4866–4881 (2022)
  • 12. Beyer, H., Kempfle, S.: Definition of physically consistent damping laws with fractional derivatives. ZAMM 75, 623–635 (1995)
  • 13. Boutiara, A., Abdo,M.S., Alqudah,M.A., Abdeljawad, T.: On a class of Langevin equations in the frame of Caputo function-dependent-kernel fractional derivatives with antiperiodic boundary conditions. AIMS Math. 6, 5518–5534 (2021)
  • 14. Bounchaud, J.P., Cont, R.: A Langevin approach to stock market fluctuations and crashes. Eur. Phys. J. B 6, 543–550 (1998)
  • 15. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent, Part II. Geophys. J. R. Astr. Soc. 13, 529–539 (1967)
  • 16. Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento (Ser II) 1, 161–198 (1971)
  • 17. Derbazi, C., Hammouche, H.: Existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems. Math. Bohem. 146, 363–374 (2021)
  • 18. Fazli, H., Sun, H.G., Nieto, J.: New existence and stability results for fractional Langevin equation with three-point boundary conditions. Comput. Appl. Math. 40, 48 (2021)
  • 19. Fukutaka, R., Onitsuka, M.: Best constant in Hyers-Ulam stability of first-order homogeneous linear differential equations with a periodic coefficient. J. Math. Anal. Appl. 473(2019), 1432–1446 (2019)
  • 20. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)
  • 21. Gorenflo, R., Rutman, R.: On ultraslow and intermediate processes. In: Transform Methods and Special Functions, Science Culture Technology Publishing (SCTP), Singapore, 61–81 (1995)
  • 22. Hadid, S.B., Luchko, Y.F.: An operational method for solving fractional differential equations of an arbitrary real order. Panamer. Math. J. 6, 57–73 (1996)
  • 23. Jung, S.: Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients. J. Math. Anal. Appl. 320, 549–561 (2006)
  • 24. Kalvandi, V., Eghbali, N., Rassias, J.M.: Mittag-Leffler-Hyers-Ulam stability of fractional differential equations of second order. J. Math. Ext. 13, 1–15 (2019)
  • 25. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
  • 26. Klages, R., Radons, G., Sokolov, I.M.: Anomalous Transport: Foundations and Applications. Wiley, Weinheim (2008)
  • 27. Kosinski, R.A., Grabowski, A.: Langevin equations for modeling evacuation processes. Acta Phys. Pol. B 3, 365–376 (2010)
  • 28. Langevin, P.: On the theory of Brownian motion. C. R. Acad. Sci. 146, 530–533 (1908)
  • 29. Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Fractals and Fractional Calculus in Continuum Mechanics, Springer Verlag, Wien and New York, 291–348 (1997)
  • 30. Mainradi, F., Pironi, P.: The fractional Langevin equation: Brownian motion revisted. Extracta Math. 10, 140–154 (1996)
  • 31. Miura, T.: On the Hyers-Ulam stability of a differentiable map. Sci. Math. Jpn. 55, 17–24 (2002)
  • 32. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
  • 33. Rassias, J.M., Murali, R., Selvan, A.P.: Mittag-Leffler-Hyers-Ulam stability of linear differential equations using Fourier transforms. J. Comput. Anal. Appl. 29, 68–85 (2021)
  • 34. Salem, A., Alzahrani, F., Almaghamsi, L.: Fractional Langevin equations with nonlocal integral boundary conditions. Mathematics 7, 402 (2019)
  • 35. Seemab, A., Rehman, M., Alzabut, J., Adjabi, Y., Abdo, M.S.: Langevin equation with nonlocal boundary conditions involving a ψ-Caputo fractional operators of different orders. AIMS Math. 6, 6749–6780 (2021)
  • 36. Slimane, I., Dahmani, Z., Nieto, J.J., Abdeljawad, T.: Existence and stability for a nonlinear hybrid differential equation of fractional order via regular Mittag-Leffler kernel. Math. Methods Appl. Sci. 46, 8043–8053 (2023)
  • 37. Webb, J.R.L.: Initial value problems for Caputo fractional equations with singular nonlinearities. Electron. J. Differ. Equ. 2019, 1–34 (2019)
  • 38. Zada, A., Waheed, H., Alzabut, J., Wang, X.: Existence and stability of impulsive coupled system of fractional integro differential equations. Demonstr. Math. 52, 296–335 (2019)
  • 39. Zada, A., Alzabut, J., Waheed, H., Popa, I.L.: Ulam-Hyers stability of impulsive integrodifferential equations with Riemann-Liouville boundary conditions. Adv. Differ. Equ. 2020, 64 (2020)
  • 40. Zhou, W.X., Chu, Y.D.: Existence of solutions for fractional differential equations with multi-point boundary conditions. Commun. Nonlinear Sci. Numer. Simulat. 17, 1142–1148 (2012)