Techniques for the extraction of spatial and spectral information in the supervised classification of hyperspectral imagery for land-cover applications

  1. Álvaro Acción Montes
unter der Leitung von:
  1. Dora Blanco Heras Doktormutter
  2. Francisco Argüello Pedreira Doktorvater

Universität der Verteidigung: Universidade de Santiago de Compostela

Fecha de defensa: 05 von Mai von 2023

Gericht:
  1. Raúl Celestino Guerra Fernández Präsident/in
  2. Natalia Seoane Iglesias Sekretärin
  3. Javier Muro Martín Vocal
Fachbereiche:
  1. Departamento de Electrónica e Computación

Art: Dissertation

Zusammenfassung

The objective of this PhD thesis is the development of spatialspectral information extraction techniques for supervised classification tasks, both by means of classical models and those based on deep learning, to be used in the classification of land use or land cover (LULC) multi- and hyper-spectral images obtained by remote sensing. The main goal is the efficient application of these techniques, so that they are able to obtain satisfactory classification results with a low use of computational resources and low execution time.