Techniques for the extraction of spatial and spectral information in the supervised classification of hyperspectral imagery for land-cover applications
- Álvaro Acción Montes
- Dora Blanco Heras Doktormutter
- Francisco Argüello Pedreira Doktorvater
Universität der Verteidigung: Universidade de Santiago de Compostela
Fecha de defensa: 05 von Mai von 2023
- Raúl Celestino Guerra Fernández Präsident/in
- Natalia Seoane Iglesias Sekretärin
- Javier Muro Martín Vocal
Art: Dissertation
Zusammenfassung
The objective of this PhD thesis is the development of spatialspectral information extraction techniques for supervised classification tasks, both by means of classical models and those based on deep learning, to be used in the classification of land use or land cover (LULC) multi- and hyper-spectral images obtained by remote sensing. The main goal is the efficient application of these techniques, so that they are able to obtain satisfactory classification results with a low use of computational resources and low execution time.