El empleo de metodologías de código abierto para las investigaciones costerascomparativa de las técnicas de detección de cambios

  1. Alejandro Gómez Pazo
Revista:
BAGE. Boletín de la Asociación Española de Geografía

ISSN: 0212-9426 2605-3322

Ano de publicación: 2023

Número: 96

Tipo: Artigo

DOI: 10.21138/BAGE.3318 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Outras publicacións en: BAGE. Boletín de la Asociación Española de Geografía

Obxectivos de Desenvolvemento Sustentable

Resumo

El estudio de la costa ha tenido una gran importancia histórica, que se ha incrementado con la llegada de las nuevas tecnologías y el posible impacto del cambio global. En este contexto, las herramientas de código abierto se presentan como un pilar fundamental en esta rama de la investigación. Este proyecto analiza las ventajas e inconvenientes de las herramientas de software libre para la estimación de las variaciones costeras y de los cambios volumétricos empleando un pequeño sector gallego como ejemplo. Se ha podido comprobar cómo las aproximaciones de código abierto presentan resultados muy semejantes a las opciones con software privativo (ratios ≥ 0.97), mejorando en algunos casos los tiempos de procesado y ofreciendo unas mayores posibilidades de personalización y capacidad de decisión a los usuarios.

Referencias bibliográficas

  • Anderson, S. W. (2019). Uncertainty in quantitative analyses of topographic change: error propagation and the role of thresholding. Earth Surface Processes and Landforms, 44(5), 1015-1033. https://doi.org/10.1002/esp.4551
  • Aoki, H., & Matsukura, Y. (2007). A new technique for non-destructive field measurement of rock-surface strength: an application of the Equotip hardness tester to weathering studies. Earth Surface Processes and Landforms, 32(12), 1759-1769. https://doi.org/10.1002/esp.1492
  • Blanco-Chao, R., Cajade-Pascual, D., & Costa-Casais, M. (2020). Rotation, sedimentary deficit and erosion of a trailing spit inside ria of Arousa (NW Spain). Science of The Total Environment, 749(April 2021), 141480. https://doi.org/10.1016/j.scitotenv.2020.141480
  • Blanco-Chao, R., Costa-Casais, M., Cajade-Pascual, D., & Gómez-Rey, G. (2019). Coastal Retreat and Sedimentation during the Last 3000 Years. Atlantic Coast of NW Spain. Journal of Marine Science and Engineering, 7(10), 331. https://doi.org/10.3390/jmse7100331
  • Burningham, H., & Fernandez-Nunez, M. (2020). Shoreline change analysis. In D.W.T. Jackson & A.D. Short (Eds.), Sandy Beach Morphodynamics (pp. 439-460). Elsevier.
  • Cabezas-Rabadán, C., Pardo-Pascual, J.E., Palomar-Vázquez, J., Ferreira, Ó., & Costas, S. (2020). Satellite Derived Shorelines at an Exposed Meso-tidal Beach. Journal of Coastal Research, 95(sp1), 1027. https://doi.org/10.2112/si95-200.1
  • Castedo, R., de la Vega-Panizo, R., Fernández-Hernández, M., & Paredes, C. (2015). Measurement of historical cliff-top changes and estimation of future trends using GIS data between Bridlington and Hornsea - Holderness Coast (UK). Geomorphology, 230, 146-160. https://doi.org/10.1016/j.geomorph.2014.11.013
  • Castelle, B., Marieu, V., Bujan, S., Splinter, K. D., Robinet, A., Sénéchal, N., & Ferreira, S. (2015). Impact of the winter 2013-2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments. Geomorphology, 238, 135-148. https://doi.org/10.1016/j.geomorph.2015.03.006
  • Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., & Böhner, J. (2015). System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8(7), 1991-2007. https://doi.org/10.5194/gmd-8-1991-2015
  • Cook, K.L. (2017). An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology, 278, 195-208. https://doi.org/10.1016/j.geomorph.2016.11.009
  • Crowell, M., Edelman, S., Coulton, K., & McAfee, S. (2007). How many people live in coastal areas? Journal of Coastal Research, 23(5), 1-4. https://doi.org/10.2112/07A-0017.1
  • Del Río, L., & Gracia, F. J. (2013). Error determination in the photogrammetric assessment of shoreline changes. Natural Hazards, 65(3), 2385-2397. https://doi.org/10.1007/s11069-012-0407-y
  • Engdahl, M., Minchella, A., Marinkovic, P., Veci, L., & Lu, J. (2012). NEST: An esa open source Toolbox for scientific exploitation of SAR data. 2012 IEEE International Geoscience and Remote Sensing Symposium, 5322-5324. https://doi.org/10.1109/IGARSS.2012.6352406
  • Feal-Pérez, A., & Blanco-Chao, R. (2013). Characterization of abrasion surfaces in rock shore environments of NW Spain. Geo-Marine Letters, 33(2–3), 173-181. https://doi.org/10.1007/s00367-012-0300-4
  • Garrote, J., Díaz-Álvarez, A., Nganhane, H., & Garzón Heydt, G. (2018). The Severe 2013–14 Winter Storms in the Historical Evolution of Cantabrian (Northern Spain) Beach-Dune Systems. Geosciences, 8(12), 459. https://doi.org/10.3390/geosciences8120459
  • Gómez-Pazo, A. (2022). Aplicación de novas tecnoloxías no estudo da costa de Galicia dirixidas a unha nova xestión no contexto do cambio global. Universidade de Santiago de Compostela.
  • Gómez-Pazo, A., Payo, A., Paz-Delgado, M.V., & Delgadillo-Calzadilla, M.A. (2022). Open Digital Shoreline Analysis System: ODSAS v1.0. Journal of Marine Science and Engineering, 10(1), 26. https://doi.org/10.3390/jmse10010026
  • Gómez-Pazo, A., & Pérez-Alberti, A. (2021). The Use of UAVs for the Characterization and Analysis of Rocky Coasts. Drones, 5(1), 23. https://doi.org/10.3390/drones5010023
  • Gómez-Pazo, A., Perez-Alberti, A., & Otero Pérez, X.L. (2019). Recent Evolution (1956–2017) of Rodas Beach on the Cíes Islands, Galicia, NW Spain. Journal of Marine Science and Engineering, 7(125). https://doi.org/10.3390/jmse7050125
  • Gómez-Pazo, A., Pérez-Alberti, A., & Trenhaile, A. (2021a). High resolution mapping and analysis of shore platform morphology in Galicia, northwestern Spain. Marine Geology, 436(March), 106471. https://doi.org/10.1016/j.margeo.2021.106471
  • Gómez-Pazo, A., Pérez-Alberti, A., & Trenhaile, A. (2021b). Tracking clast mobility using RFID sensors on a boulder beach in Galicia, NW Spain. Geomorphology, 373, 107514. https://doi.org/10.1016/j.geomorph.2020.107514
  • Gómez-Pazo, A., Pérez-Alberti, A., & Trenhaile, A. (2021c). Tracking the behavior of rocky coastal cliffs in northwestern Spain. Environmental Earth Sciences, 80(22), 757. https://doi.org/10.1007/s12665-021-09929-4
  • Gómez-Pazo, A., Pérez‐Alberti, A., & Trenhaile, A. (2019). Recording inter‐annual changes on a boulder beach in Galicia, NW Spain using an unmanned aerial vehicle. Earth Surface Processes and Landforms, 44(5), 1004-1014. https://doi.org/10.1002/esp.4549
  • Gonçalves, G. R., Pérez, J. A., & Duarte, J. (2018). Accuracy and effectiveness of low cost UASs and open source photogrammetric software for foredunes mapping. International Journal of Remote Sensing, 39(15-16), 5059-5077. https://doi.org/10.1080/01431161.2018.1446568
  • González-Villanueva, S., Costas, S., Pérez-Arluecea, M., Alejo, I., & Rial, F. (2011). Evolución del sector dunar sur del complejo de Corrubedo. Geogaceta, 50(1), 177-180. http://www.sociedadgeologica.es/archivos/geogacetas/geo50/art42.pdf
  • Hastewell, L., Inkpen, R., Bray, M., & Schaefer, M. (2020). Quantification of contemporary storm-induced boulder transport on an intertidal shore platform using radio frequency identification technology. Earth Surface Processes and Landforms, 45(7), 1601-1621. https://doi.org/10.1002/esp.4834
  • Hastewell, L. J., Schaefer, M., Bray, M., & Inkpen, R. (2019). Intertidal boulder transport: A proposed methodology adopting Radio Frequency Identification (RFID) technology to quantify storm induced boulder mobility. Earth Surface Processes and Landforms, 44(3), 681-698. https://doi.org/10.1002/esp.4523
  • Himmelstoss, E.A., Henderson, R.E., Kratzmann, M.G., & Farris, A.S. (2018). Digital Shoreline Analysis System (DSAS) version 5.0 user guide. In Open-File Report. https://doi.org/10.3133/ofr20181179
  • Hoffmeister, D., Curdt, C., & Bareth, G. (2020). Monitoring the sedimentary budget and dislocated boulders in western Greece – results since 2008. Sedimentology, 67(3), 1411-1430. https://doi.org/10.1111/sed.12723
  • Horacio, J., Muñoz-Narciso, E., Trenhaile, A.S., & Pérez-Alberti, A. (2019). Remote sensing monitoring of a coastal-valley earthflow in northwestern Galicia, Spain. Catena, 178(March), 276-287. https://doi.org/10.1016/j.catena.2019.03.028
  • IGN. (2022). Instituto Geográfico Nacional. https://www.centrodedescargas.cnig.es/
  • Jackson, C.W., Alexander, C.R., & Bush, D.M. (2012). Application of the AMBUR R package for spatio-temporal analysis of shoreline change: Jekyll Island, Georgia, USA. Computers & Geosciences, 41, 199-207. https://doi.org/10.1016/j.cageo.2011.08.009
  • Jackson, D.W.T., Costas, S., González-Villanueva, R., & Cooper, A. (2019). A global ‘greening’ of coastal dunes: An integrated consequence of climate change? Global and Planetary Change, 182(June), 103026. https://doi.org/10.1016/j.gloplacha.2019.103026
  • Kuhn, D., & Prüfer, S. (2014). Coastal cliff monitoring and analysis of mass wasting processes with the application of terrestrial laser scanning: A case study of Rügen, Germany. Geomorphology, 213, 153-165. https://doi.org/10.1016/j.geomorph.2014.01.005
  • Long, N., Millescamps, B., Guillot, B., Pouget, F., & Bertin, X. (2016). Monitoring the topography of a dynamic tidal inlet using UAV imagery. Remote Sensing, 8(5). https://doi.org/10.3390/rs8050387
  • Lyman, T.P., Elsmore, K., Gaylord, B., Byrnes, J.E.K., & Miller, L.P. (2020). Open Wave Height Logger: An open source pressure sensor data logger for wave measurement. Limnology and Oceanography: Methods, 18(7), 335-345. https://doi.org/10.1002/lom3.10370
  • Manno, G., Lo Re, C., & Ciraolo, G. (2017). Uncertainties in shoreline position analysis: The role of run-up and tide in a gentle slope beach. Ocean Science, 13(5), 661-671. https://doi.org/10.5194/os-13-661-2017
  • Masselink, G., Castelle, B., Scott, T., Dodet, G., Suanez, S., Jackson, D., & Floc’h, F. (2016). Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe. Geophysical Research Letters, 43, 2135-2143. https://doi.org/10.1002/2015GL067492
  • Muñoz Narciso, E., García, H., Sierra Pernas, C., & Pérez-Alberti, A. (2017). Study of geomorphological changes by high quality DEMs, obtained from UAVs-Structure from Motion in highest continental cliffs of Europe: A Capelada (Galicia, Spain). Geophysical Research Abstracts EGU General Assembly, 19(November), 2017-2692. https://doi.org/10.13140/RG.2.2.24076.00647
  • Nagle-McNaughton, T., & Cox, R. (2020). Measuring change using quantitative differencing of repeat structure-from-motion photogrammetry: The effect of storms on coastal boulder deposits. Remote Sensing, 12(1). https://doi.org/10.3390/rs12010042
  • Narra, P., Coelho, C., Sancho, F., & Palalane, J. (2017). CERA: An open-source tool for coastal erosion risk assessment. Ocean and Coastal Management, 142, 1-14. https://doi.org/10.1016/j.ocecoaman.2017.03.013
  • Naylor, L. A., Stephenson, W.J., & Trenhaile, A. S. (2010). Rock coast geomorphology: Recent advances and future research directions. Geomorphology, 114(1-2), 3-11. https://doi.org/10.1016/j.geomorph.2009.02.004
  • Neumann, B., Vafeidis, A. T., Zimmermann, J., & Nicholls, R. J. (2015). Future coastal population growth and exposure to sea-level rise and coastal flooding - A global assessment. PLoS ONE, 10(3). https://doi.org/10.1371/journal.pone.0118571
  • Pardo-Pascual, J. E., Sánchez-García, E., Almonacid-Caballer, J., Palomar-Vázquez, J. M., de los Santos, E. P., Fernández-Sarría, A., & Balaguer-Beser, Á. (2018). Assessing the accuracy of automatically extracted shorelines on microtidal beaches from landsat 7, landsat 8 and sentinel-2 imagery. Remote Sensing, 10(2), 1-20. https://doi.org/10.3390/rs10020326
  • Payo, A., Wallis, H., Ellis, M. A., Barkwith, A., & Poate, T. (2020). Application of portable streamer traps for obtaining point measurements of total longshore sediment transport rates in mixed sand and gravel beaches. Coastal Engineering, 156(September 2019), 103580. https://doi.org/10.1016/j.coastaleng.2019.103580
  • Paz-Delgado, M. V., Payo, A., Gómez-Pazo, A., Beck, A.-L., & Savastano, S. (2022). Shoreline Change from Optical and Sar Satellite Imagery at Macro-Tidal Estuarine, Cliffed Open-Coast and Gravel Pock-ET-Beach Environments. Journal of Marine Science and Engineering, 10, 561. https://doi.org/10.3390/jmse10050561
  • Pérez-Alberti, A., Gómez-Pazo, A., & Otero, X. L. (2020). Natural and Anthropogenic Variations in the Large Shifting Dune in the Corrubedo Natural Park, NW Iberian Peninsula (1956–2017). Applied Sciences, 11(1), 34. https://doi.org/10.3390/app11010034
  • Pérez‐Alberti, A., & Trenhaile, A.S. (2015). An initial evaluation of drone‐based monitoring of boulder beaches in Galicia, north‐western Spain. Earth Surface Processes and Landforms, 40(1), 105-111. https://doi.org/10.1002/esp.3654
  • Puertos del Estado. (2022). Puertos del Estado. http://www.puertos.es/es-es
  • R Core Team. (2020). R: A Language and Environment for Statistical Computing. https://www.r-project.org/
  • Stephenson, W.J., & Finlayson, B.L. (2009). Measuring erosion with the micro-erosion meter-Contributions to understanding landform evolution. Earth-Science Reviews, 95(1-2), 53-62. https://doi.org/10.1016/j.earscirev.2009.03.006
  • Sytnik, O., Del Río, L., Greggio, N., & Bonetti, J. (2018). Historical shoreline trend analysis and drivers of coastal change along the Ravenna coast, NE Adriatic. Environmental Earth Sciences, 77(23), 779. https://doi.org/10.1007/s12665-018-7963-8
  • Viles, H., Goudie, A., Grab, S., & Lalley, J. (2011). The use of the Schmidt Hammer and Equotip for rock hardness assessment in geomorphology and heritage science: A comparative analysis. Earth Surface Processes and Landforms, 36(3), 320-333. https://doi.org/10.1002/esp.2040
  • Vos, K., Splinter, K. D., Harley, M. D., Simmons, J. A., & Turner, I. L. (2019). CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environmental Modelling and Software, 122. https://doi.org/10.1016/j.envsoft.2019.104528
  • Wheaton, J. M., Brasington, J., Darby, S. E., & Sear, D. A. (2010). Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surface Processes and Landforms, 35(2), 136-156. https://doi.org/10.1002/esp.1886