Caracterización del crecimiento y producción de rodales forestales a partir de datos PNOA-LiDAR multitemporales en la provincia de Lugo

  1. Salgado, L. 1
  2. Colina, A. 1
  3. Docampo, M.L. 2
  4. López Sánchez, C.A. 3
  1. 1 Instituto de Recursos Naturales y Ordenación del Territorio, Campus de Mieres, Universidad de Oviedo
  2. 2 Departamento de Ingeniería Agroforestal, Escola Politécnica Superior de Enxeñaría, Campus de Lugo, Universidade de Santiago de Compostela
  3. 3 Departamento de Biología de Organismos y Sistemas, Escuela Politécnica de Mieres, Campus de Mieres, Universidad de Oviedo
Revista:
Cuadernos de la Sociedad Española de Ciencias Forestales

ISSN: 1575-2410 2386-8368

Ano de publicación: 2020

Número: 46

Páxinas: 231-244

Tipo: Artigo

DOI: 10.31167/CSECFV5I45.19907 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Outras publicacións en: Cuadernos de la Sociedad Española de Ciencias Forestales

Resumo

In this study, data from the 4th National Forest Inventory (IFN-4) and from the 1st and 2nd National Airborne Laser Exploration Survey (ALS) are used to develop predictive performance models and direct estimates for the three main commercial forest species (Eucalyptus globulus, Pinus pinasterand Pinus radiata) grown in the province of Lugo. The integration of both types of data required prior harmonization due to the differences in the time of data acquisition and the difficulties to accurately geolocate the IFN-4 plots. The harmonized data of E. globulus, P.pinaster and P.radiata have been used to develop predictive models to determine the total volume with cortex (VCC) at a point t different from the capture of the PNOA-LiDAR data. The annual increase in volume with cortex (IAVC) was calculated by means of the relationship between the variables of the IFN4 plots, with the metrics derived from the PNOA-LiDAR data, by the Random Forest (RF) linear regression method and several techniques of machine learning. These data are also used to obtain VCC values directly using multi-temporal PNOA-LiDAR data, the latter being captured at the projection time t of the other method.

Referencias bibliográficas

  • Alberdi, I., Sandoval, V., Condes, S., Cañellas, I., Vallejo, R., 2016. El Inventario Forestal Nacional español, una herramienta para el conocimiento, la gestión y la conservación de los ecosistemas forestales arbolados. Revista Ecosistemas, 25(3), 88-97. https://doi.org/10.7818/ECOS.2016.25-3.10
  • Bollandsås, O. M., Gregoire, T. G., Næsset, E., Øyen, B. H., 2013. Detection of biomass change in a Norwegian mountain forest area using small footprint airborne laser scanner data. Statistical Methods & Applications, 22(1), 113-129. https://doi.org/10.1007/s10260-012-0220-5
  • Bollandsås, O. M., Ene, L. T., Gobakken, T., Næsset, E., 2017. Estimation of biomass change in montane forests in Norway along a 1200 km latitudinal gradient using airborne laser scanning: a comparison of direct and indirect prediction of change under a model-based inferential approach. Scandinavian journal of forest research, 33(2), 155-165. https://doi.org/10.1080/02827581.2017.1338354
  • Cao, L., Coops, N. C., Innes, J. L., Sheppard, S. R., Fu, L., Ruan, H., She, G., 2016. Estimation of forest biomass dynamics in subtropical forests using multi-temporal airborne LiDAR data. Remote Sensing of Environment, 178, 158-171. https://doi.org/10.1016/j.rse.2016.03.012
  • Dalponte, M., Jucker, T., Liu, S., Frizzera, L., Gianelle, D., 2019. Characterizing forest carbon dynamics using multi-temporal lidar data. Remote Sensing of Environment, 224, 412-420. https://doi.org/10.1016/j.rse.2019.02.018
  • Englhart, S., Jubanski, J., Siegert, F., 2013. Quantifying dynamics in tropical peat swamp forest biomass with multi-temporal LiDAR datasets. Remote Sensing, 5(5), 2368-2388. https://doi.org/10.3390/rs5052368
  • Fernández-Landa, A., Fernández-Moya, J., Tomé, J. L., Algeet-Abarquero, N., Guillén-Climent, M. L., Vallejo, R., Marchamalo, M., 2018. High resolution forest inventory of pure and mixed stands at regional level combining National Forest Inventory field plots, Landsat, and low density lidar. International journal of remote sensing, 39(14), 4830-4844. https://doi.org/10.1080/01431161.2018.1430406
  • Garcia-Gutierrez, J., Gonzalez-Ferreiro, E., Riquelme-Santos, J. C., Miranda, D., Dieguez-Aranda, U., Navarro-Cerrillo, R. M., 2014. Evolutionary feature selection to estimate forest stand variables using LiDAR. International Journal of Applied Earth Observation and Geoinformation, 26, 119-131. https://doi.org/10.1016/j.jag.2013.06.005
  • Gonçalves-Seco, L., González-Ferreiro, E., Diéguez-Aranda, U., Fraga-Bugallo, B., Crecente, R., Miranda, D., 2011. Assessing the attributes of high-density Eucalyptus globulus stands using airborne laser scanner data. International Journal of Remote Sensing, 32(24), 9821-9841. https://doi.org/10.1080/01431161.2011.593583
  • González-Ferreiro, E., Diéguez-Aranda, U., Miranda, D., 2012. Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities. Forestry, 85(2), 281-292. https://doi.org/10.1093/forestry/cps002
  • Hopkinson, C., Chasmer, L., y Hall, R. J., 2008. The uncertainty in conifer plantation growth prediction from multi-temporal lidar datasets. Remote Sensing of Environment, 112(3), 1168-1180. https://doi.org/10.1016/j.rse.2007.07.020
  • Jiménez, E., Vega, J. A., Fernández-Alonso, J. M., Vega-Nieva, D., Ortiz, L., López-Serrano, P. M., López-Sánchez, C. A., 2017. Estimation of aboveground forest biomass in Galicia (NW Spain) by the combined use of LiDAR, LANDSAT ETM+ and national forest inventory data. iForest-Biogeosciences and Forestry, 10(3), 590. https://doi.org/10.3832/ifor1989-010
  • Marinelli, D., Paris, C., y Bruzzone, L., 2018. A novel approach to 3-D change detection in multitemporal LiDAR data acquired in forest areas. IEEE Transactions on Geoscience and Remote Sensing, 56(6), 3 030-3 046. https://doi.org/10.1109/TGRS.2018.2789660
  • McRoberts, R. E., Næsset, E., Gobakken, T., Bollandsås, O. M., 2015. Indirect and direct estimation of forest biomass change using forest inventory and airborne laser scanning data. Remote Sensing of Environment, 164, 36-42. https://doi.org/10.1016/j.rse.2015.02.018
  • Nilsson, M., Nordkvist, K., Jonzén, J., Lindgren, N., Axensten, P., Wallerman, J., Olsson, H. , 2016. A nationwide forest attribute map of Sweden predicted using airborne laser scanning data and field data from the National Forest Inventory. Remote Sensing of Environment, 194, 447-454. https://doi.org/10.1016/j.rse.2016.10.022
  • Novo-Fernández, A., Barrio-Anta, M. A., Recondo, C., Cámar-Obregón, A., López-Sánchez, C.A., 2019. Integration of National Forest Inventory and Nationwide Airbone Laser Scanning Data to Improve Forest Yield Predictions in North-Western Spain. Remote Sensing. 11(14), 1 693. https://doi.org/10.3390/rs11141693
  • Réjou-Méchain, M., Tymen, B., Blanc, L., Fauset, S., Feldpausch, T. R., Monteagudo, A., Chave, J., 2015. Using repeated small-footprint LiDAR acquisitions to infer spatial and temporal variations of a high-biomass Neotropical forest. Remote Sensing of Environment, 169, 93-101. https://doi.org/10.1016/j.rse.2015.08.001
  • Renslow, M., 2012. Manual of airborne topographic LiDAR. The American Society for Photogrammetry and Remote Sensing, Bethesda, 504 pp.
  • Simonson, W., Ruiz-Benito, P., Valladares, F., Coomes, D. A., 2016. Modelling above-ground carbon dynamics using multi-temporal airborne lidar: insights from a Mediterranean woodland. Biogeosciences, 13, 961-973. https://doi.org/10.5194/bg-13-961-2016
  • Tomé-Morán, J.L., Esteban Cava, J., Martín Alcón, S., Escamochero, I., Fernández-Landa, A., 2017. ForestMap, Online forest inventories using Murcia Regional Airborne LiDAR Data. XVII Congreso de la Asociación Española de Teledetección. pp. 147-150. Murcia 3-7 octubre 2017.
  • Wehr, A. & Lohr, U., 1999. Airborne laser scanning-an introduction and overview. ISPRS Journal of photogrammetry and remote sensing, 54(2-3), 68-82. https://doi.org/10.1016/S0924-2716(99)00011-8
  • Zhiwei, X., Xinghua, W., 2010. Research for information extraction based on wrapper model algorithm. In Proceedings of the Second International Conference on Computer Research and Development, HaiphongCity, Vietnam, 7-10 May 2010; pp. 652-655. https://doi.org/10.1109/ICCRD.2010.141
  • Zhao, K., Suarez, J. C., Garcia, M., Hu, T., Wang, C., Londo, A., 2018. Utility of multitemporal lidar for forest and carbon monitoring: Tree growth, biomass dynamics, and carbon flux. Remote Sensing of Environment, 204, 883-897. https://doi.org/10.1016/j.rse.2017.09.007