On a Family of Non-Volterra Quadratic Operators Acting on a Simplex
- Jamilov, Uygun 1
- Ladra, Manuel 2
-
1
Institute of Nuclear Physics
info
-
2
Universidade de Santiago de Compostela
info
ISSN: 1575-5460
Año de publicación: 2020
Volumen: 19
Número: 3
Tipo: Artículo
Otras publicaciones en: Qualitative theory of dynamical systems
Resumen
In the present paper, we consider a convex combination of non-Volterra quadratic stochastic operators defined on a finite-dimensional simplex depending on a parameter α and study their trajectory behaviours. We showed that for any α∈[0,1) the trajectories of such operator converge to a fixed point. For α=1 any trajectory of the operator converges to a periodic trajectory.
Información de financiación
Financiadores
-
Agencia Estatal de Investigación
- MTM2016-79661-P
-
Xunta de Galicia
- ED431C 2019/10
-
International Mathematical Union
- CDC
Referencias bibliográficas
- 1. Bernstein, S.: The solution of a mathematical problem related to the theory of heredity, Uchn. Zapiski. NI Kaf. Ukr. Otd. Mat. 1, 83–115 (1924)
- 2. Devaney, R. L.: An introduction to chaotic dynamical systems. In: Studies in Nonlinearity. Westview Press, Boulder. Reprint of the second (1989) edition (2003)
- 3. Ganikhodjaev, N.N., Ganikhodjaev, R.N., Jamilov, U.U.: Quadratic stochastic operators and zero-sum game dynamics. Ergod. Theory Dyn. Syst. 35(5), 1443–1473 (2015)
- 4. Ganikhodjaev, N.N., Saburov, M., Nawi, A.M.: Mutation and chaos in nonlinear models of heredity. Sci. World J. (2014). https://doi.org/10.1155/2014/835069
- 5. Ganikhodzhaev, N.N., Zanin, D.V.: On a necessary condition for the ergodicity of quadratic operators defined on a two-dimensional simplex. Russ. Math. Surv. 59(3), 571–572 (2004)
- 6. Ganikhodzhaev, R.N.: A family of quadratic stochastic operators that act in S2. Dokl. Akad. Nauk UzSSR 1, 3–5 (1989)
- 7. Ganikhodzhaev, R.N.: Quadratic stochastic operators, Lyapunov functions and tournaments. Sb. Math. 76(2), 489–506 (1993)
- 8. Ganikhodzhaev, R., Mukhamedov, F., Rozikov, U.: Quadratic stochastic operators and processes: results and open problems. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14(2), 279–335 (2011)
- 9. Jamilov, U.U.: Quadratic stochastic operators corresponding to graphs. Lobachevskii J. Math. 34(2), 148–151 (2013)
- 10. Jamilov, U.U.: On a family of strictly non-Volterra quadratic stochastic operators. J. Phys. Conf. Ser. 697, 012013 (2016)
- 11. Jamilov, U.U.: On symmetric strictly non-Volterra quadratic stochastic operators. Discontin. Nonlinear Complex 5(3), 263–283 (2016)
- 12. Jamilov, U.U., Ladra, M.: Non-ergodicity of uniform quadratic stochastic operators. Qual. Theory Dyn. Syst. 15(1), 257–271 (2016)
- 13. Jamilov, U.U., Ladra, M., Mukhitdinov, R.T.: On the equiprobable strictly non-Volterra quadratic stochastic operators. Qual. Theory Dyn. Syst. 16(3), 645–655 (2017)
- 14. Jamilov, U.U., Scheutzow, M., Wilke-Berenguer, M.: On the random dynamics of Volterra quadratic operators. Ergod. Theory Dyn. Syst. 37(1), 228–243 (2017)
- 15. Kesten, H.: Quadratic transformations: a model for population growth: I. Adv. Appl. Probab. 2, 1–82 (1970)
- 16. Khamraev, AYu.: On the dynamics of a quasistrictly non-Volterra quadratic stochastic operator. Ukr. Math. J. 71(8), 1116–1122 (2019)
- 17. Lyubich, Y.I.: Mathematical structures in population genetics. In: Biomathematics, vol. 22. Springer, Berlin (1992)
- 18. Rozikov, U.A., Zhamilov, U.: F-quadratic stochastic operators. Math. Notes 83(3–4), 554–559 (2008)
- 19. Rozikov, U.A., Zhamilov, U.U.: Volterra quadratic stochastic operators of a two-sex population. Ukr. Math. J. 63(7), 1136–1153 (2011)
- 20. Saburov, M.: A class of nonergodic Lotka-Volterra operators. Math. Notes 97(5), 759–763 (2015)
- 21. Ulam, S. M.: A collection of mathematical problems. In: Interscience Tracts in Pure and Applied Mathematics, no. 8. Interscience Publishers, New York (1960)
- 22. Vallander, S.S.: On the limit behavior of sequences of iterations of some quadratic transformations. Dokl. Akad. Nauk SSSR 202(3), 515–517 (1972). (in Russian)
- 23. Vallander, S. S.: On “ergodic properties of a family of quadratic stochastic operators” in rings and modules. In: Limit Theorems of Probability Theory, 1, pp. 153–157. Izd. Leningrad. Gos. Univ., Leningrad (1986) (in Russian)
- 24. Vallander, S.S.: Change in the orbit orientation for a certain family of stochastic quadratic mappings. Vest. St. Petersb. Univ. Math. 46(4), 187–188 (2013)
- 25. Zakharevich, M.I.: On the behaviour of trajectories and the ergodic hypothesis for quadratic mappings of a simplex. Russ. Math. Surv. 33(6), 265–266 (1978)
- 26. Zhamilov, U.U., Rozikov, U.A.: On the dynamics of strictly non-Volterra quadratic stochastic operators on a two-dimensional simplex. Sb. Mat. 200(9), 1339–1351 (2009)