Realisability problem in arrow categories

  1. Costoya, Cristina
  2. Méndez, David
  3. Viruel, Antonio
Revista:
Collectanea mathematica

ISSN: 0010-0757

Año de publicación: 2020

Volumen: 71

Fascículo: 3

Páginas: 383-405

Tipo: Artículo

DOI: 10.1007/S13348-019-00265-2 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: Collectanea mathematica

Información de financiación

Referencias bibliográficas

  • Arkowitz, M.: The group of self-homotopy equivalences-a survey. In: Groups of self-equivalences and related topics. Lecture Notes in Mathematics, vol. 1425, pp. 170–203. Springer, Berlin (1990)
  • Arkowitz, M., Lupton, G.: Rational obstruction theory and rational homotopy sets. Math. Z. 235(3), 525–539 (2000)
  • Bauer, K., Sen, D., Zvengrowski, P.: A generalized goursat lemma. Tatra Mt. Math. Publ. 64, 1–19 (2015)
  • Costoya, C., Méndez, D., Viruel, A.: Homotopically rigid Sullivan algebras and their applications. An Alpine Bouquet of Algebraic Topology, Contemporary Mathematics, vol. 708, pp. 103–121, American Mathematical Society, Providence, RI (2018)
  • Costoya, C., Viruel, A.: Every finite group is the group of self-homotopy equivalences of an elliptic space. Acta Math. 213(1), 299–315 (2014)
  • Costoya, C., Viruel, A.: Faithful actions on commutative differential graded algebras and the group isomorphism problem. Q. J. Math. 65, 857–867 (2014)
  • Costoya, C., Viruel, A.: On the realizability of group actions. Adv. Math. 336, 49–62 (2018)
  • Coxeter, H.S.M., Moser, W.O.J.: Generators and relations for discrete groups, 4th ed. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 14, Springer, Berlin (1980)
  • de Groot, J.: Groups represented by homeomorphism groups. Math. Ann. 138, 80–102 (1959)
  • Félix, Y.: Problems on mapping spaces and related subjects. In: Homotopy Theory of Function Spaces and Related Topics. Contemporary Mathematics, vol. 519, pp. 217–230 (2010)
  • Félix, Y., Halperin, S., Thomas, J.-C.: Rational Homotopy Theory. Graduate Texts in Mathematics, vol. 205. Springer, New York (2001)
  • Frucht, R.: Herstellung von Graphen mit vorgegebener abstrakter Gruppe. Compos. Math. 6, 239–250 (1939)
  • Goursat, E.: Sur les substitutions orthogonales et les divisions régulières de l’espace. Ann. Sci. École Norm. Sup. (3) 6, 9–102 (1889)
  • Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford Lecture Series in Mathematics and its Applications, vol. 28. Oxford University Press, Oxford (2004)
  • Kahn, D.W.: Realization problems for the group of homotopy classes of self-equivalences. Math. Ann. 220(1), 37–46 (1976)
  • Kahn, Donald W.: Some research problems on homotopy-self-equivalences. In: Groups of Self-equivalences and Related Topics. Lecture Notes in Mathematics, vol. 1425, Springer, Berlin, pp 204–207 (1990)
  • König, D.: Theorie der endlichen und unendlichen graphen: Komninatorische topologie der streckenkomplexe, Mathematik und ihre Anwendungen in Physik und Technik, Reihe, A. Akademische Verlagsgesellschaft m.b.h., Leipzig (1936)
  • Pultr, A., Trnková, V.: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, vol. 22. North-Holland Mathematical Library, North-Holland, Amsterdam (1980)
  • Rutter, J.W.: Spaces of Homotopy Self-equivalences: A Survey. Lecture Notes in Mathematics, vol. 1662. Springer, Berlin (1997)
  • White, A.T.: Graphs, Groups and Surfaces. North-Holland Mathematics Studies, vol. 8, 2nd edn. North-Holland Publishing Co., Amsterdam (1984)