Sobre ciertas condiciones de finitud para anillos con respecto a una topología aditiva

  1. García Hernández, José Luis
Supervised by:
  1. José Luis Gómez Pardo Director

Defence university: Universidad de Murcia

Year of defence: 1983

Committee:
  1. José Luis Gómez Pardo Chair
  2. Javier Otal Cinca Secretary
  3. Eduardo García-Rodeja Fernández Committee member
  4. Pere Menal Brufal Committee member
  5. Emilio Villanueva Novoa Committee member

Type: Thesis

Teseo: 8561 DIALNET

Abstract

Se generaliza a una teoría de torsión hereditaria el concepto de módulo finitamente cogenerado y se obtienen caracterizaciones que generalizan las de los módulos finitamente cogenerados, se introduce la 1-codimension de una categoria de grothendieck y en particular la 1-codimension (por la izquierda) de un anillo. Los anillos de 1-codimension cero son los conoetherianos y los de 1-codimension 1 son los cocoherentes. Se encuentran caracterizaciones de los anillos conoetherianos y cocherentes relativos especialmente en el caso conmutativo asimismo para anillos conmutativos con una teoria de torsion cogenerada por un inyectivo que es finitamente cogenerado relativo a dicha teoria se obtienen diferentes cotas para su 1-codimension relativa.