Optimization of statistical and bioinformatic methods for the analysis of next generation sequencing data for rare disease diagnosis

  1. Roca Otero, Iria
unter der Leitung von:
  1. María Luz Couce Pico Doktormutter
  2. María Rosaura Leis Trabazo Co-Doktormutter

Universität der Verteidigung: Universidade de Santiago de Compostela

Fecha de defensa: 18 von Februar von 2020

Gericht:
  1. José María Fraga Bermúdez Präsident
  2. María Jesús Sobrido Gómez Sekretär/in
  3. David Posada González Vocal
Fachbereiche:
  1. Departamento de Ciencias Forenses, Anatomía Patolóxica, Xinecoloxía e Obstetricia e Pediatría

Art: Dissertation

Zusammenfassung

The main focus of this thesis, presented as a compendium of research articles, is the optimization of the analysis of Next Generation Sequencing data in order to facilitate the diagnosis of rare diseases. For this goal, we present an appropach to prioritize single nucleotide variants and small insertions and deletions, not only in terms of their type and genomic position, but also in terms of the mutational tolerance of the gene encompassing them. We also evaluate the strengths and weakness of the currently published copy number variation (CNV) detection tools, and develop a methodology to create sinthetic samples with artificial CNVs to test them. Finally, we present a novel CNV-detection program, optimized for gene panel assays.