Total mercury distribution among soil aggregate size fractions in a temperate forest podzol

  1. Gómez Armesto, Antía
  2. Bibián-Núñez, Lucía
  3. Campillo-Cora, Claudia
  4. Pontevedra-Pombal, Xabier
  5. Arias-Estévez, Manuel
  6. Nóvoa-Muñoz, Juan Carlos
Zeitschrift:
Spanish Journal of Soil Science: SJSS

ISSN: 2253-6574

Datum der Publikation: 2018

Ausgabe: 8

Nummer: 1

Seiten: 57-73

Art: Artikel

DOI: 10.3232/SJSS.2018.V8.N1.05 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Andere Publikationen in: Spanish Journal of Soil Science: SJSS

Ziele für nachhaltige Entwicklung

Zusammenfassung

En este trabajo se analiza la distribución de Hg total (HgT) en fracciones de tamaño agregado en los horizontes A, E, Bh y Bs de un podzol forestal representativo. La distribución de agregados fue dominada por la fracción de tamaño arena gruesa (promedio del 55%), seguida arena fina (29%), limo fino (10%), limo grueso (4%) y arcilla (2%). En general, los valores medios de HgT incrementaron a medida que el tamaño de los agregados disminuía: arcilla (170 ng g-1) > limo fino (130 ng g-1) > limo grueso (80 ng g-1) > arena fina (32 ng g-1) > arena gruesa (14 ng g-1). El enriquecimiento de HgT en los agregados de tamaño arcilla varía entre 2 y 11 veces más que los niveles en la fracción tierra fina (< 2 mm). La acumulación de HgT en los agregados de menor tamaño estaba estrechamente asociada al C orgánico total, al C extraído con pirofosfato Na, a los complejos metal (Al, Fe)-humus y a los oxihidróxidos de Fe y Al. De hecho, estos parámetros variaron significativamente (p < 0,05) con el tamaño de agregado y sus valores más elevados se encontraron en las fracciones más finas. Esto sugiere el papel de estos compuestos del suelo en el incremento de la superficie específica por unidad de masa y de cargas negativas en los agregados más pequeños, favoreciendo la retención de Hg. Los valores del factor de acumulación de Hg (HgAF) fueron de hasta 10,8 en los agregados de tamaño arcilla, siendo cercanos a 1 en las fracciones de tamaño arena. Respecto de los factores de enriquecimiento de Hg (HgEF), estos fueron < 4 (categoría “contaminación moderada”) en la mayoría de los horizontes y tamaños de agregado. El índice de masa por tamaño de agregado (GSFHg) reveló que las fracciones más finas tenían una mayor carga de Hg que el correspondiente a sus masas, siendo destacable la contribución del limo fino que constituía más del 50% del HgT en los horizontes Bh y Bs. El índice de riesgo ecológico potencial (PERIHg) aumentó conforme disminuía el tamaño de agregado, con los valores más altos en los horizontes iluviales (45-903) y los más bajos en el horizonte E (3-363). La distribución heterogénea del Hg entre fracciones de tamaño agregado debe ser tenida en cuenta para la determinación de Hg para fines como cargas críticas, valores de fondo geoquímico o índices de riesgos medioambientales. Además, la acumulación de Hg en los agregados más finos podría ser preocupante debido a su potencial movilidad en suelos forestales, tanto mediante su transferencia por lixiviado a aguas freáticas y superficiales como su movilización por escorrentía en los horizontes superficiales.

Informationen zur Finanzierung

This work was supported by the Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia) with a Reference Competitive Groups grant (ED431C2017/62) to BV1 Research Group. Xunta de Galicia is acknowledged by the pre-doctoral fellowship of A. G. A. (ED481A-2016/220). We also thank to the Seguridade Alimentaria e Desenvolvemente Sostible service of CACTI-University of Vigo for soil chemical characterization.

Bibliographische Referenzen

  • Acosta JA, Cano AF, Arocena JM, Debela F, Martínez-Martínez S. 2009. Distribution of metals in soil particle size fractions and its implication to risk assessment of playgrounds in Murcia city (Spain). Geoderma 149(1-2):101-9.
  • Aguilar J, Benayas J, Macías F. 1980. Procesos de edafogénesis. I. Podsolización. Anales de Edafología y Agrobiología 39:1895-1992.
  • Bertsch PM, Bloom PR. 1996. Aluminum. In: Sparks DL, editor. Methods of soil analysis. Part 3. Chemical methods. Madison: Soil Science Society of America. 517 p.
  • Biester H, Scholz C. 1997. Determination of mercury binding forms in contaminated soils: Mercury pyrolysis versus sequential extractions. Environ Sci Technol. 31(1):233-239.
  • Buurman P, Jongmans AG. 2005. Podzolisation and soil organic matter dynamics. Geoderma 125(1-2):71-83.
  • Cai M, McBride MB, Li K. 2016. Bioaccessibility of Ba, Cu, Pb, and Zn in urban garden and orchard soils. Environ Pollut. 208:145-152.
  • Do Valle CM, Santana GP, Augusti R, Egreja Filho FB, Windmöller CC. 2005. Speciation and quantification of mercury in oxisol, ultisol, and spodosol from Amazon (Manaus, Brazil). Chemosphere 58(6):779-792.
  • Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N. 2013. Mercury as a global pollutant: Sources, pathways, and effects. Environ Sci Technol. 47(10):4967-4983.
  • Fernández-Martínez R, Loredo J, Ordóñez A, Rucandio MI. 2005. Distribution and mobility of mercury in soils from an old mining area in Mieres, Asturias (Spain). Sci Total Environ. 346(1-3):200-212.
  • Fernández-Martínez R, Loredo J, Ordóñez A, Rucandio I. 2014. Mercury availability by operationally defined fractionation in granulometric distributions of soils and mine wastes from an abandoned cinnabar mine. Environ Sci Process Impacts 16(5):1069-1075.
  • Ferro-Vázquez C, Nóvoa-Muñoz JC, Costa-Casais M, Klaminder J, Martínez-Cortizas A. 2014. Metal and organic matter immobilization in temperate podzols: A high resolution study. Geoderma 217-218:225-234.
  • Fiorentino JC, Enzweiler J, Angélica RS. 2011. Geochemistry of mercury along a soil profile compared to other elements and to the parental rock: Evidence of external input. Water Air Soil Pollut. 221(1-4):63-75.
  • García-Rodeja E, Nóvoa JC, Pontevedra X, Martínez-Cortizas A, Buurman P. 2004. Aluminium fractionation of European volcanic soils by selective dissolution techniques. Catena 56(1-3):155-83.
  • Gee GW and Bauder JW. 1986. Particle-size analysis. In: Klute A, editor. Methods of soil analysis. Part 1. Physical and mineralogical methods. Madison, WI: SSSA, ASA and SSSA. 383 p.
  • Gómez-Armesto A, Ferro-Vázquez C, Cutillas-Barreiro L, Costas-Casais M, Arias-Estévez M, Nóvoa-Muñoz JC, Martínez-Cortizas A. 2015. Distribution and accumulation of total Hg in high vertical resolution sampled temperate forest podzols from Galicia (NW Spain). In: Abstract Book of the 10th Iberian and 7th Iberoamerican Congress on Environmental Contamination and Toxicology; 2015 Jul 14-17; Vila Real, Portugal. p. 287. ISBN: 978-989-704-210-2.
  • Gong C, Ma L, Cheng H, Liu Y, Xu D, Li B, Liu F, Ren Y, Liu Z, Zhao C, et al. 2014. Characterization of the particle size fraction associated heavy metals in tropical arable soils from Hainan Island, China. J Geochem Explor. 139:109-114.
  • Guedron S, Grangeon S, Lanson B, Grimaldi M. 2009. Mercury speciation in a tropical soil association; consequence of gold mining on Hg distribution in French Guiana. Geoderma 153(3-4):331-346.
  • Gunda T, Scanlon TM. 2013. Topographical influences on the spatial distribution of soil mercury at the catchment scale. Water Air Soil Pollut. 224(4):1511.
  • Hakanson L. 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 14(8):975-1001.
  • He N, Wu L, Wang Y, Han X. 2009. Changes in carbon and nitrogen in soil particle-size fractions along a grassland restoration chronosequence in Northern China. Geoderma 150(3-4):302-308.
  • Inácio MM, Pereira V, Pinto MS. 1998. Mercury contamination in sandy soils surrounding an industrial emission source (Estarreja, Portugal). Geoderma 85(4):325-339.
  • IUSS Working Group WRB. 2006. World reference base for soil resources 2006. World Soil Resources Reports No. 103. Rome: FAO.
  • Jing YD, He ZL, Yang XE. 2007. Effects of pH, organic acids, and competitive cations on mercury desorption in soils. Chemosphere 69(10):1662-1669.
  • Li Q, Ji H, Qin F, Tang L, Guo X, Feng J. 2014. Sources and the distribution of heavy metals in the particle size of soil polluted by gold mining upstream of Miyun reservoir, Beijing: Implications for assessing the potential risks. Environ Monit Assess. 186(10):6605-6626.
  • Li H, Ji H, Shi C, Gao Y, Zhang Y, Xu X, Ding H, Tang L, Xing Y. 2017. Distribution of heavy metals and metalloids in bulk and particle size fractions of soils from coal-mine brownfield and implications on human health. Chemosphere 172:505-515.
  • Ljung K, Selinus O, Otabbong E, Berglund M. 2006. Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children. Appl Geochem. 21(9):1613-1624.
  • Luo XS, Yu S, Li XD. 2011. Distribution, availability, and sources of trace metals in different particle size fractions of urban soils in Hong Kong: Implications for assessing the risk to human health. Environ Pollut. 159(5):1317-1326.
  • Mason RP, Sheu G. 2002. Role of the ocean in the global mercury cycle. Global Biogeochem Cycles 16(4):40-41.
  • Parry SA, Hodson ME, Oelkers EH, Kemp SJ. 2011. Is silt the most influential soil grain size fraction? Appl Geochem. 26(SUPPL.):S119-S122.
  • Peech M, Alexander LT, Dean LA, Reed JF. 1947. Methods of soil analysis for soil fertility investigations. Washington, D.C.: U.S. Dep Agr Cir 757, US Gov Print Office.
  • Peña-Rodríguez S, Pontevedra-Pombal X, Gayoso EGR, Moretto A, Mansilla R, Cutillas-Barreiro L, Arias-Estévez M, Nóvoa-Muñoz JC. 2014. Mercury distribution in a toposequence of sub-antarctic forest soils of Tierra del Fuego (Argentina) as consequence of the prevailing soil processes. Geoderma 232-234:130-140.
  • Qin F, Ji H, Li Q, Guo X, Tang L, Feng J. 2014. Evaluation of trace elements and identification of pollution sources in particle size fractions of soil from iron ore areas along the Chao River. J Geochem Explor. 138:33-49.
  • Richardson JB, Friedland AJ, Engerbretson TR, Kaste JM, Jackson BP. 2013. Spatial and vertical distribution of mercury in upland forest soils across the Northeastern United States. Environ Pollut. 182:127-134.
  • Roulet M, Lucotte M. 1995. Geochemistry of mercury in pristine and flooded ferralitic soils of a tropical rain forest in French Guiana, South America. Water Air Soil Pollut. 80(1-4):1079-1088.
  • Roulet M, Lucotte M, Saint-Aubin A, Tran S, Rhéault I, Farella N, De Jesus Da Silva E, Dezencourt J, Sousa Passos CJ, Santos Soares G, et al. 1998. The geochemistry of mercury in central Amazonian soils developed on the Alter-do-Chao formation of the lower Tapajos River Valley, Para State, Brazil. Sci Total Environ. 223(1):1-24.
  • Sauer D, Sponagel H, Sommer M, Giani L, Jahn R, Stahr K. 2007. Podzol: Soil of the year 2007. A review on its genesis, occurrence, and functions. J Plant Nutr Soil Sci. 170(5):581-597.
  • Schlüter K. 1997. Sorption of inorganic mercury and monomethyl mercury in an iron-humus podzol soil of southern Norway studied by batch experiments. Environ Geol. 30(3-4):266-279.
  • Schuster E. 1991. The behaviour of mercury in the soil with special emphasis on complexation and adsorption processes - A review of the literature. Water Air Soil Pollut. 56(1):667-680.
  • Semlali RM, Van Oort F, Denaix L, Loubet M. 2001. Estimating distributions of endogenous and exogenous Pb in soils by using Pb isotopic ratios. Environ Sci Technol. 35(21):4180-4188.
  • Skyllberg U, Bloom PR, Qian J, Lin CM, Bleam WF. 2006. Complexation of mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environ Sci Technol. 40(13):4174-4180.
  • Smith-Downey NV, Sunderland EM, Jacob DJ. 2010. Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model. J Geophys Res G Biogeosci. 115(3): G03008.
  • Stemmer M, Gerzabek MH, Kandeler E. 1998. Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication. Soil Biol Biochem. 30(1):9-17.
  • Sutherland RA. 2003. Lead in grain size fractions of road-deposited sediment. Environ Pollut. 121(2):229-237.
  • Tipping E, Lofts S, Hooper H, Frey B, Spurgeon D, Svendsen C. 2010. Critical limits for Hg(II) in soils, derived from chronic toxicity data. Environ Pollut. 158(7):2465-2471.
  • Xiao R, Zhang M, Yao X, Ma Z, Yu F, Bai J. 2016. Heavy metal distribution in different soil aggregate size classes from restored brackish marsh, oil exploitation zone, and tidal mud flat of the Yellow River delta. J Soils Sed. 16(3):821-830. Xin M, Gustin MS. 2007. Gaseous elemental mercury exchange with low mercury containing soils: Investigation of controlling factors. Appl Geochem. 22(7):1451-1466.
  • Yongming H, Peixuan D, Junji C, Posmentier ES. 2006. Multivariate analysis of heavy metal contamination in urban dusts of Xi'an, Central China. Sci Total Environ. 355(1-3):176-186.
  • Yutong Z, Qing X, Shenggao L. 2016. Distribution, bioavailability, and leachability of heavy metals in soil particle size fractions of urban soils (Northeastern China). Environ Sci Pollut Res. 23(14):14600-14607.