Revisiting the genus Photobacteriumtaxonomy, ecology and pathogenesis

  1. Alejandro Labella 1
  2. David Ruiz Arahal 2
  3. Dolores Castro López 1
  4. Manuel Luis Lemos Ramos 3
  5. Juan José Borrego García 1
  1. 1 Universidad de Málaga
    info

    Universidad de Málaga

    Málaga, España

    ROR https://ror.org/036b2ww28

  2. 2 Universitat de València
    info

    Universitat de València

    Valencia, España

    ROR https://ror.org/043nxc105

  3. 3 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

Revista:
International microbiology: official journal of the Spanish Society for Microbiology

ISSN: 1618-1905

Ano de publicación: 2017

Volume: 20

Número: 1

Páxinas: 1-10

Tipo: Artigo

Outras publicacións en: International microbiology: official journal of the Spanish Society for Microbiology

Resumo

The genus Photobacterium, one of the eight genera included in the family Vibrionaceae, contains 27 species with valid names and it has received attention because of the bioluminescence and pathogenesis mechanisms that some of its species exhibit. However, the taxonomy and phylogeny of this genus are not completely elucidated; for example, P. logei and P. fischeri are now considered members of the genus Aliivibrio, and previously were included in the genus Vibrio. In addition, P. damselae subsp. piscicida was formed as a new combination for former Vibrio damsela and Pasteurella piscicida. Moreover, P. damselae subsp. damselae is an earlier heterotypic synonym of P. histaminum. To avoid these incovenences draft and complete genomic sequences of members of Photobacterium are increasingly becoming available and their use is now routine for many research laboratories to address diverse goals: species delineation with overall genomic indexes, phylogenetic analyses, comparative genomics, and phenotypic inference. The habitats and isolation source of the Photobacterium species include seawater, sea sediments, saline lake waters, and a variety of marine organisms with which the photobacteria establish different relationships, from symbiosis to pathogenic interactions. Several species of this genus contain bioluminescent strains in symbiosis with marine fish and cephalopods; in addition, other species enhance its growth at pressures above 1 atmosphere, by means of several high-pressure adaptation mechanisms and for this, they may be considered as piezophilic (former barophilic) bacteria. Until now, only P. jeanii, P. rosenbergii, P. sanctipauli, and the two subspecies of P. damselae have been reported as responsible agents of several pathologies on animal hosts, such as corals, sponges, fish and homeothermic animals. In this review we have revised and updated the taxonomy, ecology and pathogenicity of several members of this genus. [Int Microbiol 20(1): 1-10 (2017)]