A dominant height growth and site index model for Pinus pseudostrobus Lindl. in northeastern Mexico

  1. Benedicto Vargas-Larreta
  2. Oscar A. Aguirre-Calderón
  3. José J. Corral-Rivas
  4. Felipe Crecente-Campo
  5. Ulises Diéguez-Aranda
Revista:
Agrociencia

ISSN: 1405-3195 2521-9766

Año de publicación: 2013

Volumen: 47

Número: 1

Páginas: 91-106

Tipo: Artículo

Otras publicaciones en: Agrociencia

Resumen

Foresters in northeastern Mexico currently use height growth curves developed 20 years ago to estimate the dominant height and productivity of Pinus pseudostrobus Lindl. The development of new curves could improve the ability to predict heights and would allow increasingly precise yield projections for this species. Data from stem analysis of 72 P. pseudostrobus dominant trees growing in natural stands in Nuevo Leon, Tamaulipas and Coahuila (northeastern Mexico), were used to evaluate several dynamic site equations derived with the Generalized Algebraic Difference Approach (GADA). All the equations directly estimate dominant height and site index from any dominant height and age. The fittings were carried out using the base-age-invariant nested iterative approach. A second-order continuous-time autoregressive error structure was used to correct the inherent autocorrelation of the longitudinal data used. The GADA formulation derived from the Korf model, by considering the asymptote and the rate parameters as related to site productivity, had the best fit to the data. Therefore, it is recommended for estimating dominant height growth and site index for Pinus pseudostrobus in northeastern Mexico.

Referencias bibliográficas

  • Aguirre C., O. A. (1989). Aufstellung von Ertragstafeln auf der Basis einmaliger Waldaufnahmen am Beispiel von Pinus pseudostrobus Lindl. im Nortdosten Mexikos. Göttingen. 107
  • Bailey, R. L., Clutter, J. L.. (1974). Base-age invariant polymorphic site curves. For. Sci.. 20. 155-159
  • Barrio-Anta, M., Diéguez-Aranda, U.. (2005). Site quality of pedunculate oak (Quercus robur L.) stands in Galicia (northwest Spain). Eur. J. For. Res.. 124. 19-28
  • Bertalanffy, L.v.. (1949). Problems of organic growth. Nature. 163. 156-158
  • Bertalanffy, L.v.. (1957). Quantitative laws in metabolism and growth. Quart. Rev, Biol.. 32. 217-231
  • Carmean, W. H.. (1972). Site index curves for upland oaks in the Central States. For. Sci.. 18. 109-120
  • Cieszewski, C.. (2001). Three methods of deriving advanced dynamic site equations demonstrated on inland Douglas-fir site curves. Can. J. For. Res.. 31. 165-173
  • Cieszewski, C.. (2002). Comparing fixed- and variable-base-age site equations having single versus multiple asymptotes. For. Sci.. 48. 7-23
  • Cieszewski, C.. (2004). GADA derivation of dynamic site equations with polymorphism and variable asymptotes from Richards, Weibull, and other exponential functions. University of Georgia. Athens^eGeorgia Georgia. 16
  • Cieszewski, C., Bailey, R. L.. (2000). Generalized Algebraic Difference Approach: Theory based derivation of dynamic site equations with polymorphism and variable asymptotes. For. Sci.. 46. 116-126
  • Clutter, J. L., Fortson, J. C., Piennar, J. C., Brister, L. V., Bailey, R. L.. (1983). Timber Management: A Quantitative Approach. John Wiley & Sons. New York. 333
  • Diéguez-Aranda, U., Burkhart, H. E., Rodríguez-Soalleiro, R.. (2005). Modeling dominant height growth of radiata pine (Pinus radiata D. Don) plantations in north-western Spain. For. Ecol. Manage.. 215. 271-284
  • Diéguez-Aranda, U., Grandas-Arias, J. A., Álvarez-González, J. G., Gadow, K.v.. (2006). Site quality curves for birch stands in North-Western Spain. Silva Fennica. 40. 631-644
  • Goelz J., C. G., Burk, T. E.. (1996). Measurement error causes bias in site index equations. Can. J. For. Res.. 26. 1586-1593
  • Hossfeld, J. W.. (1822). Mathematik für Forstmänner, Ökonomen und Cameralisten. Gotha. 310
  • Huang, S.. (1999). Empirical and Process-based Models for Forest Tree and Stand Growth Simulation. Ediçoes SalamandraNovas Tecnologias. Lisbon. 61-98
  • Kutner, M. H., Nachtsheim, C. J., Neter, J., Li, W.. (2005). Applied Linear Statistical Models. 5. McGraw-Hill. Lisbon. 1396
  • Lundqvist, B.. (1957). On the height growth in cultivated stands of pine and spruce in northern Sweden. Medd Fran Statens Skogforsk. 47. 1-64
  • Myers, R. H.. (1990). Classical and Modern Regression with Applications. 2. Duxbury Press. Belmont. 488
  • Neter, J., Kutner, M. H., Nachtsheim, C. J., Wasserman, W.. (1996). Applied Linear Statistical Models. 4. Richard D. Irwin. Chicago. 1408
  • Newberry, J. D.. (1991). A note on Carmean's estimate of height from stem analysis data. For. Sci.. 37. 368-369
  • Richards, F. J.. (1959). A flexible growth function for empirical use. J. Exp. Bot.. 10. 290-300
  • Ryan, T. P.. (1997). Modern Regression Methods. John Wiley & Sons. New York. 515
  • (2008). SAS/ETS* 9.2 User's Guide. SAS Institute Inc.. Cary^eNC NC. 2861
  • Sloboda, B.. (1971). Zur Darstellung von Wachstumsprozessen mit Hilfe von Differentialgleichungen erster Ordnung. Mitt. D. Baden-Württembergischen Forstl.. 109
  • Tait, D. E., Cieszewski, C. J., Bella, I. E.. (1988). The stand dynamics of lodgepole pine. Can. J. For. Res.. 18. 1255-1260
  • West, P. W., Ratkowsky, D. A., Davis, A. W.. (1984). Problems of hypothesis testing of regressions with multiple measurements from individual sampling units. For. Ecol-Manage.. 7. 207-224