Estudio de modelos predictivos de redes complejas en Parasitología

  1. Riera Fernández, Pablo José
unter der Leitung von:
  1. Francisco Prado Prado Doktorvater/Doktormutter
  2. Humberto González Díaz Doktorvater/Doktormutter

Universität der Verteidigung: Universidade de Santiago de Compostela

Fecha de defensa: 10 von Februar von 2012

Gericht:
  1. Florencio Martínez Ubeira Präsident
  2. José Manuel Leiro Vidal Sekretär
  3. Jose Luís Cagide Fajín Vocal
  4. Isela García Pintos Vocal
  5. Riccardo Concu Vocal

Art: Dissertation

Teseo: 321422 DIALNET

Zusammenfassung

En Parasitología podemos encontrar gran cantidad de sistemas complejos, como son las redes de interacciones parásito-hospedador o las redes de propagación de enfermedades parasitarias. Las bases de datos de estos sistemas contienen información no del todo precisa. Esto determina la necesidad de re-evaluación de estos datos. Pero al ser bases de datos con una enorme cantidad de información su re-evaluación en términos experimentales es difícil. Por ello resulta interesante adaptar y aplicar a estos sistemas metodologías computacionales ya desarrolladas en otros campos para estudiar sistemas complejos. En esta tesis usamos las cadenas de Markov para extender los índices topológicos de grafos químicos al estudio de redes complejas en Parasitología y obtener modelos QSAR/QSPR para evaluar la calidad de las conexiones de dichas redes.