Curvatura media de hipersuperficies tubulares y rigidez Kaehleriana

  1. Palmer Andreu, Vicente
Dirixida por:
  1. Vicente Miquel Director

Universidade de defensa: Universitat de València

Ano de defensa: 1994

Tribunal:
  1. Antonio Martínez Naveira Presidente/a
  2. Francisco José Carreras Martínez Secretario/a
  3. Ángel Ferrández Izquierdo Vogal
  4. José Antonio Oubiña Galiñanes Vogal
  5. Francisco Urbano Pérez-Aranda Vogal

Tipo: Tese

Teseo: 44399 DIALNET

Resumo

ESTA MEMORIA SE CENTRA EN EL ESTUDIO DE TRES INVARIANTES METRICOS, DEFINIDOS SOBRE PARES (P,M), DONDE M ES UNA VARIEDAD KAEHLER Y P ES UNA SUBVARIEDAD DE M, ESTOS INVARIANTES SON EL VOLUMEN RELATIVO DE LA SUBVARIEDAD P EN LA VARIEDAD M, VOL (P)/VOL(M), LA FUNCION TIEMPO DE SALIDA MEDIO Y EL PRIMER VALOR PROPIO DE LA LAPLACIANA. EN EL CASO DEL VOLUMEN RELATIVO SE CARACTERIZA EL PAR (CPQ, CPN) COMO EL UNICO SOBRE EL QUE ESTE INVARIANTE ALCANZA SU VALOR MINIMO, CUANDO LA VARIEDAD M VERIFICA CIERTAS COTAS SOBRE LA CURVATURA. SE HAN ESTUDIADO TAMBIEN SITUACIONES EN LAS QUE LA COTA MINIMA DEL VOLUMEN RELATIVO HA SIDO ALCANZADO POR EL PAR (QN-1,CPN) Y POR EL PAR (RPN,CPN), DONDE QN-1 DENOTA LA CUADRICA COMPLEJA Y RPN EL ESPACIO PROYECTIVO REAL DE DIMENSION N. POR OTRA PARTE, SE HA ESTUDIADO EL PRIMER VALOR PROPIO Y EL TIEMPO DE SALIDA MEDIO PARA VARIEDADES KAEHLERIANAS COMPACTAS CON BORDE Y PARA TUBOS Y SUS COMPLEMENTARIOS ALREDEDOR DE SUBVARIEDADES DE UNA VARIEDAD KEHLER COMPACTA. EN CIERTOS CASOS, SE HA CARACTERIZADO AL ESPACIO PROYECTIVO COMPLEJO CPN COMO EL ESPACIO SOBRE EL QUE ESOS INVARIANTES ALCANZAN SU VALOR MAXIMO O MINIMO. LOS METODOS UTILIZADOS SE BASAN EN EL ESTUDIO DE LA CURVATURA MEDIA DE LAS HIPERSUPERFICIES TUBULARES ALREDEDOR DE UNA SUBVARIEDAD.