Construcciones en topos que extienden relaciones entre categorías de espacios topológicos y bornológicos
- Lambán Pardo, Laureano
- Luis Español González Director
Universidade de defensa: Universidad de Zaragoza
Ano de defensa: 1989
- José Luis Viviente Mateu Presidente/a
- María Angeles de Prada Vicente Secretario/a
- María del Carmen Mínguez Herrero Vogal
- José Manuel Bayod Bayod Vogal
- Felipe Gago Couso Vogal
Tipo: Tese
Resumo
EL TRABAJO SE INICIA CON EL ESTUDIO GENERAL DE LOS TOPOS DE SISTEMAS SOBRE UN MONOIDE M, CON ATENCION ESPECIAL A LAS NOCIONES DE TOPOLOGIA Y HAZ ASOCIADO. COMO CASO PARTICULAR DE TOPOS DE ESTE TIPO, SE ESTUDIA POSTERIORMENTE EL TOPOS TOPOLOGICO DE JOHNSTONE J, Y EL TOPOS G, DE LOS PREHACES QUE CONSERVAN PRODUCTOS FINITOS SOBRE LA CATEGORIA DE LOS CONJUNTOS NUMERALES. EL TOPO J ES UNA BUENA EXTENSION DE LA CATEGORIA DE LOS ESPACIOS SECUENCIALES Y G EXTIENDE LA CATEGORIA DE LAS BORNOLOGIAS DE KOLMOGOROV. PARA AMBAS INCLUSIONES SE PRUEBA LA CONSERVACION DE LAS CORRESPONDIENTES EXPONENCIACIONES Y SE CALCULA EL OBJETO DE LOS NUMEROS REALES DE DEDEKIND EN G. FINALMENTE SE CONSIDERAN LAS CATEGORIAS DE MODULOS SOBRE SISTEMAS DE SUCESIONES REALES, TANTO EN J Y G, COMO EN EL TOPOS DE LOS SISTEMAS SOBRE EL SUBMONOIDE M' DE M=TOP (LN+,LN+) FORMADO POR LAS APLICACIONES QUE CONSERVAN EL LIMITE, CATEGORIAS QUE SE CONTEMPLAN COM EXTENSIONES DE CATEGORIAS, SOBRE CONJUNTOS, DE ESPACIOS VECTORIALES TOPOLOGICOS Y BORNOLOGICOS SECUENCIALES. EN EL ULTIMO CASO, SE CALCULAN HOMOMORFISMOS Y PRODUCTOS TENSIORIALES ASI COMO ADJUNCIONES CANONICAS, QUE EXTIENDEN EN ALGUNA MEDIDA DUALIDADES ENTRE TOPOLOGIAS Y BORNOLOGIAS SECUENCIALES.