Advantageous Fungi against Parasites Transmitted through Soil
- Ángel Hernández Malagón, José
- Filipa Cazapal-Monteiro, Cristiana
- Bonilla Quintero, Rodrigo
- Miguel Palomero Salinero, Antonio
- Isabel Silva Torres, María
- Voinot Messnier, Mathilde
- Vilá Pena, María
- Romasanta Blanco, Ángel
- Pedreira García, José
- Paz Silva, Adolfo
- Sánchez-Andrade Fernández, Rita
- Sol Arias Vázquez, María
ISBN: 9781838804688, 9781838804695
Ano de publicación: 2019
Tipo: Capítulo de libro
Resumo
Although many fungal specimens are responsible for human and/or animal infection, other species are advantageous for preventing the infection by soil-transmitted zoonotic parasites. Infection occurs by the accidental ingestion of parasitic stages (cysts, oocysts, eggs, and larvae), their active penetration through the skin or through direct contact. Numerous species of helminths develop an external phase in the soil where the infective stages are attained, thus mammals become infected when grazing, drinking, or accidentally. Ectoparasites as ticks perform also in the soil the phase from egg to larva. Different soil saprophytic fungi that turn into predatory agents when parasitic stages are near have been isolated and described. These species are capable of destroying the pathogens or irreversibly decreasing their viability, providing thus a very interesting and sustainable tool to reduce environmental contamination by pathogenic agents. In the last year, a profound knowledge on the most appropriate fungal species, together with the proper way to disseminate them, has been acquired.
Referencias bibliográficas
- Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505-511
- Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proceedings of the National Academy of Sciences of the United States of America. 2012;109:8334-8339
- Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, et al. A new antibiotic kills pathogens without detectable resistance. Nature. 2015;517:455-459
- Hegedüs N, Marx F. Antifungal proteins: More than antimicrobials? Fungal Biology Reviews. 2013;26:132-145
- Arias MS, Cazapal-Monteiro CF, Suárez J, Miguélez S, Francisco I, Arroyo FL, et al. Mixed production of filamentous fungal spores for preventing soil-transmitted helminth zoonoses: A preliminary analysis. BioMed Research International. 2013;2013:567876. DOI: 10.1155/2013/567876
- Arias MS, Cazapal-Monteiro C, Valderrábano E, Miguélez S, Rois JL, López-Arellano ME, et al. A preliminary study of the biological control of strongyles affecting equids in a zoological park. Journal of Equine Veterinary Science. 2013;33:1115-1120
- Hernández JÁ, Arroyo FL, Suárez J, Cazapal-Monteiro CF, Romasanta Á, López-Arellano ME, et al. Feeding horses with industrially manufactured pellets with fungal spores to promote nematode integrated control. Veterinary Parasitology. 2016;229:37-44
- Janeway CA Jr, Travers P, Walport M, Shlomchik MJ. Immunobiology: The Immune System in Health and Disease. 5th ed. New York: Garland Science; 2001
- Berg G, Eberl L, Hartmann A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental Microbiology. 2005;7:1673-1685
- Brevik EC, Sauer TJ. The past, present, and future of soils and human health studies. The Soil. 2015;1:35-46
- Jeffery S, van der Putten WH. Soil Borne Human Diseases. JRC Scientific and Technical Reports; 2011. http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/22432/2/lbna24893enn.pdf [Accessed: March 01, 2018]
- Wall DH, Nielsen UN, Six J. Soil biodiversity and human health. Nature. 2015;528:69-76
- Cwiklinski K, O'Neill SM, Donnelly S, Dalton JP. A prospective view of animal and human Fasciolosis. Parasite Immunology. 2016;38:558-568
- Kwon I, Kim H, Lee J, Choi M, Chai J, Nakamura-Uchiyama F, et al. A serologically diagnosed human case of cutaneous larva migrans caused by Ancylostoma caninum. Korean Journal of Parasitology. 2003;41:233-237
- Jensen PK, Phuc PD, Konradsen F, Klank LT, Dalsgaard A. Survival of Ascaris eggs and hygienic quality of human excreta in Vietnamese composting latrines. Environmental Health. 2009;8:57
- Kuzmina TA. Contamination of the environment by strongylid (Nematoda: Strongylidae) infective larvae at horse farms of various types in Ukraine. Parasitology Research. 2012;110:1665-1674
- Michalik J, Hofman T, Buczek A, Skoracki M, Sikora B. Borrelia burgdorferi s.l. in Ixodes ricinus (Acari: Ixodidae) ticks collected from vegetation and small rodents in recreational areas of the city of Poznań. Journal of Medical Entomology. 2003;40:690-697
- Dunn JC, Turner HC, Tun A, Anderson RM. Epidemiological surveys of, and research on, soil-transmitted helminths in Southeast Asia: A systematic review. Parasites & Vectors. 2016;9:31. DOI: 10.1186/s13071-016-1310-2
- Tchuem Tchuenté LA. Control of soil-transmitted helminths in sub-Saharan Africa: Diagnosis, drug efficacy concerns and challenges. Acta Tropica. 2011;120(Suppl 1):S4-S11
- Chen J, Liu Q, Liu GH, Zheng WB, Hong SJ, Sugiyama H, et al. Toxocariasis: A silent threat with a progressive public health impact. Infectious Diseases of Poverty. 2018;7:59. DOI: 10.1186/s40249-018-0437-0
- Liu J, Li S, Deng G, Yang W, Chen W, Lu H. Ultrasound biomicroscopic imaging in paediatric ocular toxocariasis. British Journal of Ophthalmology. 2017;101:1514-1517
- Błaszkowska J, Góralska K, Wójcik A, Kurnatowski P, Szwabe K. Presence of Toxocara spp. eggs in children's recreation areas with varying degrees of access for animals. Annals of Agricultural and Environmental Medicine. 2015;22:23-27
- Roddie G, Stafford P, Holland C, Wolfe A. Contamination of dog hair with eggs of Toxocara canis. Veterinary Parasitology. 2008;152:85-93
- Casas-Flores S, Herrera-Estrella A. Antagonism of plant parasitic nematodes by fungi. In: Kubicek C, Druzhinina I, editors. Environmental and Microbial Relationships. The Mycota. Vol. 4. Berlin, Heidelberg: Springer; 2007
- Paz-Silva A, Francisco I, Valero-Coss RO, Cortiñas FJ, Sánchez JA, Francisco R, et al. Ability of the fungus Duddingtonia flagrans to adapt to the cyathostomin egg-output by spreading chlamydospores. Veterinary Parasitology. 2011;179:277-282
- Saumell CA, Fernández AS, Echevarria F, Gonçalves I, Iglesias L, Sagües MF, et al. Lack of negative effects of the biological control agent Duddingtonia flagrans on soil nematodes and other nematophagous fungi. Journal of Helminthology. 2016;90:706-711
- Hernández JA, Vázquez-Ruiz RA, Cazapal-Monteiro CF, Valderrábano E, Arroyo FL, Francisco I, et al. Isolation of ovicidal fungi from fecal samples of captive animals maintained in a zoological park. Journal of Fungi (Basel). 2017;3. DOI: 10.3390/jof3020029
- Cortiñas FJ, Cazapal-Monteiro CF, Hernández JA, Arroyo FL, Miguélez S, Suárez J, et al. Potential use of Mucor circinelloides for the biological control of certain helminths affecting livestock reared in a care farm. Biocontrol Science and Technology. 2015;25:1443-1452
- Hernández JÁ. Posibilidades de control de helmintozoonosis por ascáridos mediante el uso de hongos telúricos [thesis]. Spain: University of Santiago de Compostela; 2014. (Spanish)
- Cazapal-Monteiro CF, Hernández JA, Arroyo FL, Miguélez S, Romasanta Á, Paz-Silva A, et al. Analysis of the effect of soil saprophytic fungi on the eggs of Baylisascaris procyonis. Parasitology Research. 2015;114:2443-2450
- Maciel AS, Freitas LG, Campos AK, Lopes EA, Araújo JV. The biological control of Ancylostoma spp. dog infective larvae by Duddingtonia flagrans in a soil microcosm. Veterinary Parasitology. 2010;173:262-270
- De Mello IN, Braga FR, Monteiro TS, Freitas LG, Araujo JM, Soares FE, et al. Biological control of infective larvae of Ancylostoma spp. in beach sand. Revista Iberoamericana de Micología. 2014;31:114-118
- Casillas Aguilar JA, Mendoza de Gives P, López-Arellano ME, Liébano Hernández E. Evaluation of multinutritional pellets containing Duddingtonia flagrans chlamydospore for the control of ovine haemonchosis. Annals of the New York Academy of Sciences. 2008;1149:161-163
- Braga FR, Araújo JV, Silva AR, Carvalho RO, Araujo JM, Ferreira SR, et al. Viability of the nematophagous fungus Pochonia chlamydosporia after passage through the gastrointestinal tract of horses. Veterinary Parasitology. 2010;168:264-268
- Dias AS, Araújo JV, Braga FR, Araujo JM, Puppin AC, Fernandes FM, et al. Biological control of Fasciola hepatica eggs with the Pochonia chlamydosporia fungus after passing through the cattle gastrointestinal tract. Parasitology Research. 2012;110:663-667
- Tavela Ade O, de Araújo JV, Braga FR, da Silveira WF, Dornelas e Silva VH, Carretta Júnior M, et al. Coadministration of sodium alginate pellets containing the fungi Duddingtonia flagrans and Monacrosporium thaumasium on cyathostomin infective larvae after passing through the gastrointestinal tract of horses. Research in Veterinary Science. 2013;94:568-572
- Fitz-Aranda JA, Mendoza-de-Gives P, Torres-Acosta JF, Liébano-Hernández E, López-Arellano ME, Sandoval-Castro CA, et al. Duddingtonia flagrans chlamydospores in nutritional pellets: Effect of storage time and conditions on the trapping ability against Haemonchus contortus larvae. Journal of Helminthology. 2015;89:13-18
- Arroyo FL, Arias MS, Cazapal-Monteiro CF, Hernández JÁ, Suárez J, Miguélez S, et al. The capability of the fungus Mucor circinelloides to maintain parasiticidal activity afer the industrial feed pelleting enhances the possibilities of biological control of livestock parasites. Biological Control. 2016;92:38-44
- Arias MS, Arroyo FL, Cazapal-Monteiro C, Hernández JÁ, Suárez J, Francisco I, et al. Formulating Duddingtonia flagrans in nutritional pellets for the sustainable control of equine strongyles. Journal of Science, Technology and Environment. 2015;5(1): Article ID 3000249, 16 pages. ISSN: 2227-9296
- Hernández JÁ, Sánchez-Andrade R, Cazapal-Monteiro CF, Arroyo FL, Sanchís JM, Paz-Silva A, et al. A combined effort to avoid strongyle infection in horses in an oceanic climate region: Rotational grazing and parasiticidal fungi. Parasites & Vectors. 2018;11:240. DOI: 10.1186/s13071-018-2827-3
- Palomero AM, Hernández JA, Cazapal-Monteiro CF, Balán FA, Silva MI, Paz-Silva A, et al. Implementation of biological control to the integrated control of strongyle infection among wild captive equids in a zoological park. BioMed Research International. 2018;2018:4267683. DOI: 10.1155/2018/4267683
- Camargo MG, Nogueira MR, Marciano AF, Perinotto WM, Coutinho-Rodrigues CJ, Scott FB, et al. Metarhizium anisopliae for controlling Rhipicephalus microplus ticks under field conditions. Veterinary Parasitology. 2016;223:38-42
- Aw KMS, Hue SM. Mode of infection of Metarhizium spp. fungus and their potential as biological control agents. Journal of Fungi (Basel). 2017;3:E30. DOI: 10.3390/jof3020030
- Prado-Rebolledo OF, Molina-Ochoa J, Lezama-Gutiérrez R, García-Márquez LJ, Minchaca-Llerenas YB, Morales-Barrera E, et al. Effect of Metarhizium anisopliae (Ascomycete), Cypermethrin, and d-Limonene, alone and combined, on larval mortality of Rhipicephalus sanguineus (Acari: Ixodidae). Journal of Medical Entomology. 2017;54:1323-1327
- Camargo MG, Golo PS, Angelo IC, Perinotto WM, Sá FA, Quinelato S, et al. Effect of oil-based formulations of acaripathogenic fungi to control Rhipicephalus microplus ticks under laboratory conditions. Veterinary Parasitology. 2012;188:140-147
- Lýsek H, Krajci D. Penetration of ovicidal fungus Verticillium chlamydosporium through the Ascaris lumbricoides egg-shells. Folia Parasitologica. 1987;34:57-60
- Yoshida S, Cui S, Ichihashi Y, Shirasu K. The haustorium, a specialized invasive organ in parasitic plants. Annual Review of Plant Biology. 2016;67:643-667
- Carvalho AK, Rivaldi JD, Barbosa JC, de Castro HF. Biosynthesis, characterization and enzymatic transesterification of single cell oil of Mucor circinelloides—A sustainable pathway for biofuel production. Bioresource Technology. 2015;181:47-53
- Szczęsna-Antczak M, Struszczyk-Świta K, Rzyska M, Szeląg J, Stańczyk Ł, Antczak T. Oil accumulation and in situ trans/esterification by lipolytic fungal biomass. Bioresource Technology. 2018;265:110-118
- Tang X, Zhao L, Chen H, Chen YQ, Chen W, Song Y, et al. Complete genome sequence of a high lipid-producing strain of mucor circinelloides WJ11 and comparative genome analysis with a low lipid-producing strain CBS 277.49. PLoS One. 2015;10:e0137543
- Garcia-Hermoso D, Criscuolo A, Lee SC, Legrand M, Chaouat M, Denis B, et al. Outbreak of invasive wound mucormycosis in a burn unit due to multiple strains of Mucor circinelloides f. circinelloides resolved by whole-genome sequencing. MBio. 2018;9:e00573-e00518
- Evans DE, Kawabata A, Wilson LD, Kim K, Dehghanpir SD, Gaunt SD, et al. Entomophthoromycosis and mucormycosis as causes of pneumonia in Vietnamese potbellied pigs. Journal of Veterinary Diagnostic Investigation. 2018;30:161-164