Characterization of sustainable biocompatible materials based on chitosan: cellulose composites containing sporopollenin exine capsules
- Korte, Dorota
- Swapna, Mohanachandran Nair Sindhu
- Budasheva, Hanna
- Diaz, Patricia Cazon
- Chhikara, Manisha
- Škorjanc, Tina
- Tripon, Carmen
- Farcas, Alexandra
- Pavlica, Egon
- Tran, Chieu D.
- Franko, Mladen
ISSN: 0141-8130
Ano de publicación: 2024
Volume: 282
Páxinas: 136649
Tipo: Artigo
Outras publicacións en: International Journal of Biological Macromolecules
Resumo
In this work, photothermal beam deflection spectrometric technique (BDS) is applied for non-contact and non-destructive characterization of chitosan (CS): cellulose (CEL) biocomposites with incorporated sporopollenin exine capsules (SEC). The objective was to determine the structural and thermal properties of synthesized CS:CEL:SEC composites with varying amounts of SEC, and to validate the BDS by photopyroelectric calorimetry (PPE) as an independent technique. It was found that CS:CEL biocomposites without SEC exhibit low porosities, which are on the order of 0.005 %, but can be increased by augmenting the content of CEL in the composite and/or by incorporation of SEC. By increasing the SEC content of CS:CEL composites to 50 % (w/w), the porosity increased up to 0.17 %. SEC also increases the surface roughness of biocomposite by over 2000-times to reach the roughness amplitude of 6 μm in composites with 50 % SEC. The thermal conductivities of investigated biocomposites were in the range of 40–80 mWm−1 K−1, while the thermal diffusivities were on the order of fractions of mm2s−1. With first validation of BDS results for thermal properties of CS:CEL-based composites, which show agreement with PPE results to within 5 %, this study confirms BDS technique as a perspectives tool for non-destructive characterization of CS:CEL:SEC biocomposites.
Información de financiamento
Financiadores
Referencias bibliográficas
- Nguyen, (2023), RSC Adv., 13, pp. 5509, 10.1039/D2RA07673J
- Dong, (2024), Adv. Funct. Mater., 34, pp. 2311199, 10.1002/adfm.202311199
- Somogyi Škoc, (2024), Sustainability, 16, pp. 857, 10.3390/su16020857
- M. Horue, J.M. Silva, I.R. Berti, L.R. Brandão, H. da S. Barud, G.R. Castro, Bacterial cellulose-based materials as dressings for wound healing, Pharmaceutics 15 (2023) 424. doi:https://doi.org/10.3390/pharmaceutics15020424.
- Harkins, (2014), J. Biomed. Mater. Res. Part B Appl. Biomater., 102, pp. 1199, 10.1002/jbm.b.33103
- Tran, (2015), Controlled drug release, Langmuir, 31, pp. 1516
- Becherini, (2019), ACS Appl. Mater. Interfaces, 11, pp. 44708, 10.1021/acsami.9b15530
- Tran, (2016), Carbohydr. Polym., 151, pp. 1269, 10.1016/j.carbpol.2016.06.021
- Fu, (2021), Fibers Polym., 22, pp. 1790, 10.1007/s12221-021-0854-8
- Piasecka-Zelga, (2018), Int. J. Biol. Macromol., 116, pp. 1119, 10.1016/j.ijbiomac.2018.05.123
- Holzer, (2020), Burns, 46, pp. 1924, 10.1016/j.burns.2020.06.024
- Tran, (2018), J. Colloid Interface Sci., 510, pp. 237, 10.1016/j.jcis.2017.09.006
- Ambaye, (2022), J. Environ. Manag., 301, 10.1016/j.jenvman.2021.113850
- Yataka, (2020), Polym. J., 52, pp. 645, 10.1038/s41428-020-0311-3
- Bhattacharjee, (2023), Macromol. Chem. Phys., 224, pp. 2300008, 10.1002/macp.202300008
- Khubiev, (2023), Int. J. Mol. Sci., 24, pp. 10738, 10.3390/ijms241310738
- Egorov, (2023), Materials (Basel), 16, pp. 6076, 10.3390/ma16186076
- C.D. Tran, F. Prosenc, M. Franko, G. Benzi, One-pot synthesis of biocompatible silver nanoparticle composites from cellulose and keratin: characterization and antimicrobial activity, Appl. Mater. Interfaces, 8 (2016) 34791–34801. https://doi:https://doi.org/10.1021/acsami.6b14347.
- Kondolot Solak, (2021), J. Macromol. Sci. Part A., 58, pp. 709, 10.1080/10601325.2021.1929315
- Jiang, (2023), Int. J. Biol. Macromol., 237, 10.1016/j.ijbiomac.2023.123944
- Bowler, (2001), Clin. Microbiol. Rev., 14, pp. 244, 10.1128/CMR.14.2.244-269.2001
- Ma, (2019), Adv. Healthc. Mater., 8, pp. 1900256, 10.1002/adhm.201900256
- Chung, (2003), Biomaterials, 24, pp. 4655, 10.1016/S0142-9612(03)00361-2
- Gefen, (2021), Wounds Int., 12, pp. 18
- Atalay, (2022), Appl. Bio Mater., 5, pp. 1348, 10.1021/acsabm.2c00071
- Becherini, (2020), ACS Sustain. Chem. Eng., 8, pp. 10089, 10.1021/acssuschemeng.0c02001
- Bajpai, (2019), pp. 123
- Andreola, (2000), Am. Ceram. Soc. Bull., 79, pp. 49
- Budasheva, (2023), J. Appl. Phys., 133, pp. 1, 10.1063/5.0148079
- Jeon, (2019), Photoacoustics, 15, 10.1016/j.pacs.2019.100141
- Fomina, (2022), J. Appl. Phys., 132, 10.1063/5.0088817
- Korte, (2014), Int. J. Thermophys., 35, pp. 1990, 10.1007/s10765-013-1538-4
- Barreca, (2013), Appl. Mater. Interfaces, 5, pp. 7130, 10.1021/am401475g
- Rodič, (2018), Metals (Basel), 8, pp. 248, 10.3390/met8040248
- Milošev, (2022), Appl. Surf. Sci., 574, 10.1016/j.apsusc.2021.151578
- Bračič, (2023), Appl. Surf. Sci., 611, pp. 155621, 10.1016/j.apsusc.2022.155621
- Tran, (2013), J. Hazard. Mater., 252–253, pp. 355, 10.1016/j.jhazmat.2013.02.046
- Dadarlat, (2022), J. Appl. Phys., 132, 10.1063/5.0085594
- Korte, (2015), J. Opt. Soc. Am. A, 32, pp. 61, 10.1364/JOSAA.32.000061
- Korte, (2015), Int. J. Thermophys., 36, pp. 2462, 10.1007/s10765-015-1923-2
- Cabrera, (2021), Materials (Basel), 14, pp. 7273, 10.3390/ma14237273
- Budasheva, (2023), J. Appl. Phys., 133, 10.1063/5.0148079
- Bird, (1960)
- Greenland, (2016), Eur. J. Epidemiol., 31, pp. 337, 10.1007/s10654-016-0149-3
- Shakiba-Marani, (2023), Int. J. Biol. Macromol., 224, pp. 831, 10.1016/j.ijbiomac.2022.10.169
- Zhang, (2017), RSC Adv., 7, pp. 39349, 10.1039/C7RA06103J
- Li, (2017), Biomacromolecules, 18, pp. 3766, 10.1021/acs.biomac.7b01180
- Lan, (2023), J. Biomed. Mater. Res. Part A., 111, pp. 465, 10.1002/jbm.a.37498
- de Lacerda Bukzem, (2021), Int. J. Biol. Macromol., 166, pp. 459, 10.1016/j.ijbiomac.2020.10.204
- Shi, (2022), Biomacromolecules, 23, pp. 889, 10.1021/acs.biomac.1c01334
- Jain, (2005), Int. J. Math. Comput. Model., 18, pp. 1114
- Hattori, (2014), Adv. Healthc. Mater., 3, pp. 1597, 10.1002/adhm.201400073
- Su, (2023), Heliyon, 9, 10.1016/j.heliyon.2023.e22520
- Essam, (2024), Int. J. Therm. Sci., 196, 10.1016/j.ijthermalsci.2023.108749
- S.M. Lee, I.K. Park, Y.S. Kim, H.J. Kim, H. Moon, S. Mueller, Y.-I. Jeong, Physical, morphological, and wound healing properties of a polyurethane foam-film dressing, Biomater. Res. 20 (2016) 15 (1–11). doi:https://doi.org/10.1186/s40824-016-0063-5.
- Kaya, (1917), J. Ind. Eng. Chem., 47, pp. 236, 10.1016/j.jiec.2016.11.038
- Mohan, (2012), Soft Matter, 8, pp. 9807, 10.1039/c2sm25911g
- Maver, (2015), Cellulose, 22, pp. 749, 10.1007/s10570-014-0515-9
- Feder, (1985), Biol. Rev., 60, pp. 1, 10.1111/j.1469-185X.1985.tb00416.x
- Nagase, (2005), Biochem. Eng. J., 24, pp. 105, 10.1016/j.bej.2005.02.003
- Lampin, (1997), J. Biomed. Mater. Res., 36, pp. 99, 10.1002/(SICI)1097-4636(199707)36:1<99::AID-JBM12>3.0.CO;2-E
- Yamada, (2019), Nat. Rev. Mol. Cell Biol., 20, pp. 738, 10.1038/s41580-019-0172-9
- Ventre, (2014), J. R. Soc. Interface, 11, pp. 20140687, 10.1098/rsif.2014.0687
- Lee, (2021), Prog. Mater. Sci., 117, 10.1016/j.pmatsci.2020.100732
- Yaşayan, (2021), Int. J. Polym. Mater., 70, pp. 623, 10.1080/00914037.2020.1740993
- Hassan, (2021), Int. J. Pharm., 593, 10.1016/j.ijpharm.2020.120143
- Kamoun, (2015), Arab. J. Chem., 8, pp. 38, 10.1016/j.arabjc.2013.12.003