Characterization of sustainable biocompatible materials based on chitosan: cellulose composites containing sporopollenin exine capsules

  1. Korte, Dorota
  2. Swapna, Mohanachandran Nair Sindhu
  3. Budasheva, Hanna
  4. Diaz, Patricia Cazon
  5. Chhikara, Manisha
  6. Škorjanc, Tina
  7. Tripon, Carmen
  8. Farcas, Alexandra
  9. Pavlica, Egon
  10. Tran, Chieu D.
  11. Franko, Mladen
Revista:
International Journal of Biological Macromolecules

ISSN: 0141-8130

Ano de publicación: 2024

Volume: 282

Páxinas: 136649

Tipo: Artigo

DOI: 10.1016/J.IJBIOMAC.2024.136649 SCOPUS: 2-s2.0-85207048336 WoS: WOS:001344256100001 GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: International Journal of Biological Macromolecules

Resumo

In this work, photothermal beam deflection spectrometric technique (BDS) is applied for non-contact and non-destructive characterization of chitosan (CS): cellulose (CEL) biocomposites with incorporated sporopollenin exine capsules (SEC). The objective was to determine the structural and thermal properties of synthesized CS:CEL:SEC composites with varying amounts of SEC, and to validate the BDS by photopyroelectric calorimetry (PPE) as an independent technique. It was found that CS:CEL biocomposites without SEC exhibit low porosities, which are on the order of 0.005 %, but can be increased by augmenting the content of CEL in the composite and/or by incorporation of SEC. By increasing the SEC content of CS:CEL composites to 50 % (w/w), the porosity increased up to 0.17 %. SEC also increases the surface roughness of biocomposite by over 2000-times to reach the roughness amplitude of 6 μm in composites with 50 % SEC. The thermal conductivities of investigated biocomposites were in the range of 40–80 mWm−1 K−1, while the thermal diffusivities were on the order of fractions of mm2s−1. With first validation of BDS results for thermal properties of CS:CEL-based composites, which show agreement with PPE results to within 5 %, this study confirms BDS technique as a perspectives tool for non-destructive characterization of CS:CEL:SEC biocomposites.

Información de financiamento

Referencias bibliográficas

  • Nguyen, (2023), RSC Adv., 13, pp. 5509, 10.1039/D2RA07673J
  • Dong, (2024), Adv. Funct. Mater., 34, pp. 2311199, 10.1002/adfm.202311199
  • Somogyi Škoc, (2024), Sustainability, 16, pp. 857, 10.3390/su16020857
  • M. Horue, J.M. Silva, I.R. Berti, L.R. Brandão, H. da S. Barud, G.R. Castro, Bacterial cellulose-based materials as dressings for wound healing, Pharmaceutics 15 (2023) 424. doi:https://doi.org/10.3390/pharmaceutics15020424.
  • Harkins, (2014), J. Biomed. Mater. Res. Part B Appl. Biomater., 102, pp. 1199, 10.1002/jbm.b.33103
  • Tran, (2015), Controlled drug release, Langmuir, 31, pp. 1516
  • Becherini, (2019), ACS Appl. Mater. Interfaces, 11, pp. 44708, 10.1021/acsami.9b15530
  • Tran, (2016), Carbohydr. Polym., 151, pp. 1269, 10.1016/j.carbpol.2016.06.021
  • Fu, (2021), Fibers Polym., 22, pp. 1790, 10.1007/s12221-021-0854-8
  • Piasecka-Zelga, (2018), Int. J. Biol. Macromol., 116, pp. 1119, 10.1016/j.ijbiomac.2018.05.123
  • Holzer, (2020), Burns, 46, pp. 1924, 10.1016/j.burns.2020.06.024
  • Tran, (2018), J. Colloid Interface Sci., 510, pp. 237, 10.1016/j.jcis.2017.09.006
  • Ambaye, (2022), J. Environ. Manag., 301, 10.1016/j.jenvman.2021.113850
  • Yataka, (2020), Polym. J., 52, pp. 645, 10.1038/s41428-020-0311-3
  • Bhattacharjee, (2023), Macromol. Chem. Phys., 224, pp. 2300008, 10.1002/macp.202300008
  • Khubiev, (2023), Int. J. Mol. Sci., 24, pp. 10738, 10.3390/ijms241310738
  • Egorov, (2023), Materials (Basel), 16, pp. 6076, 10.3390/ma16186076
  • C.D. Tran, F. Prosenc, M. Franko, G. Benzi, One-pot synthesis of biocompatible silver nanoparticle composites from cellulose and keratin: characterization and antimicrobial activity, Appl. Mater. Interfaces, 8 (2016) 34791–34801. https://doi:https://doi.org/10.1021/acsami.6b14347.
  • Kondolot Solak, (2021), J. Macromol. Sci. Part A., 58, pp. 709, 10.1080/10601325.2021.1929315
  • Jiang, (2023), Int. J. Biol. Macromol., 237, 10.1016/j.ijbiomac.2023.123944
  • Bowler, (2001), Clin. Microbiol. Rev., 14, pp. 244, 10.1128/CMR.14.2.244-269.2001
  • Ma, (2019), Adv. Healthc. Mater., 8, pp. 1900256, 10.1002/adhm.201900256
  • Chung, (2003), Biomaterials, 24, pp. 4655, 10.1016/S0142-9612(03)00361-2
  • Gefen, (2021), Wounds Int., 12, pp. 18
  • Atalay, (2022), Appl. Bio Mater., 5, pp. 1348, 10.1021/acsabm.2c00071
  • Becherini, (2020), ACS Sustain. Chem. Eng., 8, pp. 10089, 10.1021/acssuschemeng.0c02001
  • Bajpai, (2019), pp. 123
  • Andreola, (2000), Am. Ceram. Soc. Bull., 79, pp. 49
  • Budasheva, (2023), J. Appl. Phys., 133, pp. 1, 10.1063/5.0148079
  • Jeon, (2019), Photoacoustics, 15, 10.1016/j.pacs.2019.100141
  • Fomina, (2022), J. Appl. Phys., 132, 10.1063/5.0088817
  • Korte, (2014), Int. J. Thermophys., 35, pp. 1990, 10.1007/s10765-013-1538-4
  • Barreca, (2013), Appl. Mater. Interfaces, 5, pp. 7130, 10.1021/am401475g
  • Rodič, (2018), Metals (Basel), 8, pp. 248, 10.3390/met8040248
  • Milošev, (2022), Appl. Surf. Sci., 574, 10.1016/j.apsusc.2021.151578
  • Bračič, (2023), Appl. Surf. Sci., 611, pp. 155621, 10.1016/j.apsusc.2022.155621
  • Tran, (2013), J. Hazard. Mater., 252–253, pp. 355, 10.1016/j.jhazmat.2013.02.046
  • Dadarlat, (2022), J. Appl. Phys., 132, 10.1063/5.0085594
  • Korte, (2015), J. Opt. Soc. Am. A, 32, pp. 61, 10.1364/JOSAA.32.000061
  • Korte, (2015), Int. J. Thermophys., 36, pp. 2462, 10.1007/s10765-015-1923-2
  • Cabrera, (2021), Materials (Basel), 14, pp. 7273, 10.3390/ma14237273
  • Budasheva, (2023), J. Appl. Phys., 133, 10.1063/5.0148079
  • Bird, (1960)
  • Greenland, (2016), Eur. J. Epidemiol., 31, pp. 337, 10.1007/s10654-016-0149-3
  • Shakiba-Marani, (2023), Int. J. Biol. Macromol., 224, pp. 831, 10.1016/j.ijbiomac.2022.10.169
  • Zhang, (2017), RSC Adv., 7, pp. 39349, 10.1039/C7RA06103J
  • Li, (2017), Biomacromolecules, 18, pp. 3766, 10.1021/acs.biomac.7b01180
  • Lan, (2023), J. Biomed. Mater. Res. Part A., 111, pp. 465, 10.1002/jbm.a.37498
  • de Lacerda Bukzem, (2021), Int. J. Biol. Macromol., 166, pp. 459, 10.1016/j.ijbiomac.2020.10.204
  • Shi, (2022), Biomacromolecules, 23, pp. 889, 10.1021/acs.biomac.1c01334
  • Jain, (2005), Int. J. Math. Comput. Model., 18, pp. 1114
  • Hattori, (2014), Adv. Healthc. Mater., 3, pp. 1597, 10.1002/adhm.201400073
  • Su, (2023), Heliyon, 9, 10.1016/j.heliyon.2023.e22520
  • Essam, (2024), Int. J. Therm. Sci., 196, 10.1016/j.ijthermalsci.2023.108749
  • S.M. Lee, I.K. Park, Y.S. Kim, H.J. Kim, H. Moon, S. Mueller, Y.-I. Jeong, Physical, morphological, and wound healing properties of a polyurethane foam-film dressing, Biomater. Res. 20 (2016) 15 (1–11). doi:https://doi.org/10.1186/s40824-016-0063-5.
  • Kaya, (1917), J. Ind. Eng. Chem., 47, pp. 236, 10.1016/j.jiec.2016.11.038
  • Mohan, (2012), Soft Matter, 8, pp. 9807, 10.1039/c2sm25911g
  • Maver, (2015), Cellulose, 22, pp. 749, 10.1007/s10570-014-0515-9
  • Feder, (1985), Biol. Rev., 60, pp. 1, 10.1111/j.1469-185X.1985.tb00416.x
  • Nagase, (2005), Biochem. Eng. J., 24, pp. 105, 10.1016/j.bej.2005.02.003
  • Lampin, (1997), J. Biomed. Mater. Res., 36, pp. 99, 10.1002/(SICI)1097-4636(199707)36:1<99::AID-JBM12>3.0.CO;2-E
  • Yamada, (2019), Nat. Rev. Mol. Cell Biol., 20, pp. 738, 10.1038/s41580-019-0172-9
  • Ventre, (2014), J. R. Soc. Interface, 11, pp. 20140687, 10.1098/rsif.2014.0687
  • Lee, (2021), Prog. Mater. Sci., 117, 10.1016/j.pmatsci.2020.100732
  • Yaşayan, (2021), Int. J. Polym. Mater., 70, pp. 623, 10.1080/00914037.2020.1740993
  • Hassan, (2021), Int. J. Pharm., 593, 10.1016/j.ijpharm.2020.120143
  • Kamoun, (2015), Arab. J. Chem., 8, pp. 38, 10.1016/j.arabjc.2013.12.003