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Abstract: The clothoid (also known as Cornu spiral or Euler spiral) is a curve that is characterized by its curvature being proportional to its
length. This property makes it very useful as a transition curve when designing the layout of roads and railway tracks. This paper presents
an analysis of two methods for computing the clothoid: the classical method, which is based on the use of explicit formulas obtained from
Taylor expansions of sine and cosine functions, and an alternative algorithm, which is based on the numerical solution of the initial value
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application to three classical problems of horizontal road alignment. DOI: 10.1061/(ASCE)SU.1943-5428.0000177. © 2016 American
Society of Civil Engineers.
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Introduction

In horizontal road alignments, transition curves are used to connect
two stretches having different radii of curvature R1 6¼ R2, so that
there is a smooth change from R1 to R2. This smooth curvature
changemeans a gradual increase/decrease of centrifugal force expe-
rienced by the vehicle, which, in addition to avoiding the disturb-
ance of passengers, significantly reduces the risk of accident.
Moreover, transition curves for highway vertical alignments have
been introduced, and analysis of these curves was recently pre-
sented (Easa and Hassan 2000a; Easa and Hassan 2000b; Kobry�n
2015). Recent works suggest different types of curves as transition
curves (Tari and Baykal 2005; Kobry�n 2011; Bosurgi and
D’Andrea 2012; Eliou and Kaliabetsos 2014; Kobry�n 2014), but the
transition curve that has been most commonly used in design of
roads is the clothoid (Baass 1984; Kobry�n 1993; Baykal et al. 1997;
Dong et al. 2007).

Although the clothoid (also called Euler spiral or Cornu spi-
ral) has been known for hundreds of years, it is currently
widely used as a transition curve in the design of roads and
railways and continues to be subject of interesting mathematical
studies (see, for example, Korkut et al. 2008; Narayan 2014).
First works on this curve date from the end of the seventeenth
century. These are framed in the study of an elasticity problem,
introduced in 1694 by the Swiss mathematician Jakob
Bernoulli (1654–1705), and successfully solved, in the middle
of the eighteenth century, by another great Swiss scientist,
Leonhard Euler (1701–1783). Some years later, the curve was

rediscovered by two French physicists and used to study the
diffraction of light. First, Augustin-Jean Fresnel (1788–1827)
parametrized the curve in terms of integrals (the famous
Fresnel integrals), and later, Marie Alfred Cornu (1841–1902)
used this parameter to draw the curve accurately. Finally, its
use as a transition curve for railways was introduced by the
American engineer Arthur Newell Talbot (1857–1942) in the
late nineteenth century [more details on the historical evolution
of this curve can be found in Levien (2008)].

First, this paper presents the initial value problems giving the
arc length parametrization obtained from the properties character-
izing the clothoid. The next section presents a comparison of two
numerical methods used to compute the clothoid: the classical
method used in surveying engineering (based on the use of
explicit formulas obtained from Taylor expansions of sine and co-
sine functions) and an alternative algorithm based on the numeri-
cal solution of the initial value problems giving the clothoid para-
metrization. This alternative method is simple and efficient, and
its effectiveness is shown through its application to three prob-
lems of horizontal road alignment: connecting an oriented straight
stretch with an arc of an oriented circle, connecting two oriented
straight stretches with different directions, and connecting two
oriented circles. Finally, the last section presents some brief and
interesting conclusions.

Arc Length Parametrization

The clothoid is a curve in which, at every point, the product
of the radius of curvature by the arch length is constant. This
property is what makes it useful as transition curve and allows
for easy determination of its arc length parametrization.

Let C be a smooth plane curve of length L, and denote by
r(s) = (x(s), y(s)) its arc length parametrization, s 2 ½0; L�.
Because r0ðsÞ ¼ ðx0ðsÞ; y0ðsÞÞ is a unit vector, if UðsÞ 2 ½0; 2pÞ
denotes the angle of the vector tangent to the curve C at the
point r(s) with the positive abscissa axis (OXþ) (see Fig. 1), it
verifies that

x0ðsÞ ¼ cosUðsÞ; s 2 ð0; LÞ
y0ðsÞ ¼ sinUðsÞ; s 2 ð0; LÞ

�
(1)
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On theother hand, the curvature ofC in thepoint r(s) is definedas

kðsÞ ¼ jjr00ðsÞjj

In this case

r00ðsÞ ¼ ðx00ðsÞ; y00ðsÞÞ ¼ U0ðsÞð�sinUðsÞ; cosUðsÞÞ

and consequently

kðsÞ ¼ jU0ðsÞj

Similarly, the radius of curvature is defined as the inverse of the
curvature, and therefore

rcðsÞ ¼ 1
jU0ðsÞj ; s 2 ð0; LÞ

Because C is a clothoid, the product of the radius of curvature by
the arc length is constant, and there must be A 2 R (called the clo-
thoid parameter) verifying

srcðsÞ ¼ A2; s 2 ½0; L� (2)

that is

jU0ðsÞj ¼ s
A2

; s 2 ð0; LÞ

Thus, ifU0 denotes the angle of the tangent vector to the curveC
in the point r(0) = (x0, y0) with OX

þ, then

UðsÞ ¼ λ
s2

2A2
þ U0; s 2 ½0; L� (3)

where l = 1 if UðsÞ is increasing (if the clothoid is traversed in the
counterclockwise direction) and l = –1 if UðsÞ is decreasing (if the
clothoid is traversed in the clockwise direction) (see Fig. 3).

Replacing the previous expression in Eq. (1), the clothoid paramet-
rization is given as the solution of the following initial value
problems:

x0ðsÞ ¼ cos λ
s2

2A2
þ U0

� �
; s 2 ð0; LÞ;

xð0Þ ¼ x0

8<
: (4)

y0ðsÞ ¼ sin λ
s2

2A2
þ U0

� �
; s 2 ð0; LÞ;

yð0Þ ¼ y0

8<
: (5)

Remark 1

In some applications, for example, to compute the clothoid linking a
straight stretchwith a givenpoint of a circle arc (see Fig. 4), the initial
point r(0) = (x0, y0) is not known, but the end point r(L) = (xL, yL) is
known (it is the given point). In this case, the initial conditions x(0) =
x0 and y(0) = y0 in Eqs. (4) and (5) have to be changed by the end con-
ditions x(L) = xL, y(L) = yL, so that twofinal valueproblemsare solved
insteadof two initial valueproblems.

Remark 2

The clothoid parameter A is completely determined if the radius of
curvature is known at any point of the curve (for any value of s). For
example, if the point is to compute the clothoid with a radius of cur-
vature R at the end point (when s = L), Eq. (2) leads to RL = A2 and,
consequently, the clothoid will be given by parameter A ¼ ffiffiffiffiffiffi

RL
p

.
Similarly, for any value ofA>0, the expression in Eq. (2) implies

lim
s!0þ

rcðsÞ ¼ þ1

which means that the curvature of any clothoid at the initial point
r(0) = (x0, y0) is null. Two curves link at a point when the two curves
have the same slope and the same curvature at that point. In this
sense, all clothoids link at the starting point with the straight line
passing through that point, with slope given byUð0Þ ¼ U0.

Numerical Computation

As noted, for a given parameterA, there exist two clothoids coming out
of the point r(0) = (x0, y0) with slope given by Uð0Þ ¼ U0. Once it is
determinedwhich of the two clothoids to compute (once the value of l
is fixed), the solutions of Eqs. (4) and (5) can be used to compute it.
The differential equations that govern these problems are trivial, and so

xðsÞ ¼
ðs
0
cos λ

t2

2A2
þ U0

� �
dt þ x0; s 2 ½0; L� (6)

yðsÞ ¼
ðs
0
sin λ

t 2

2A2
þ U0

� �
dt þ y0; s 2 ½0; L� (7)

With these expressions, it should be noted that:
1. The clothoid of parameter A starting at r(0) = (0, 0), tangent to

OXþ (Uð0Þ ¼ 0) and for s> 0 that is above the axis OX (l =
1), is given by

x̂ðsÞ ¼
ðs
0
cos

t2

2A2

� �
dt ; s 2 ½0; L� (8)

ŷðsÞ ¼
ðs
0
sin

t2

2A2

� �
dt ; s 2 ½0; L� (9)

Any other clothoid of parameter A can be obtained by a transla-
tion [moving the origin to the point (x0, y0)], a rotation (of
angle U0), and, eventually (when λ ¼ �1), a symmetry with
respect to the new axis (the axis OX translated and rotated).
This property makes it necessary to compute that clothoid, call
it standard, and then apply to it the required basic transforma-
tions. This approach is widely used in surveying engineering,
and the next section presents a widespread method for the com-
putation of that clothoid.

s

r(s
)

Φ(
s)

x(s)x0 xL

y(s)

y0

yL
r´(s)

Fig. 1. CurveC, arc length parametrization
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2. The integrals appearing in Eqs. (6) and (7) have been thor-
oughly studied and, for example, for the case U0 ¼ 0, with the
introduction of a new dummy variable s ¼ t=ð ffiffiffiffi

p
p

AÞ in
Eqs. (8) and (9), these integrals are transformed into the known
Fresnel integrals [see, for example, Abramowitz and Stegun
(1972) and the references therein]. The direct computation of
these integrals is not possible, and it is necessary to use some
kind of numerical approximation. Thus, it can be more useful
to employ a numerical method for directly solving the initial
value problems in Eqs. (4) and (5), rather than the integrals in
Eqs. (6) and (7). This approach, equivalent to the other (see
Remark 3), has the advantage of, by applying the method in a
previous step, allowing for more control over the model. The
section discussing the alternative method presents an example
of the algorithm obtained by applying the simplest numerical
method to solve the problems in Eqs. (4) and (5).

The Classical Method

As noted, any clothoid of parameter A can be obtained by basic
transformations from the standard clothoid, given by Eqs. (8)
and (9). To compute the integrals in Eqs. (8) and (9), the following
algorithm is widely used:
1. Consider the McLaurin polynomials of a certain degree for

cos x and sin x.
2. Replace the values of the integrands in Eqs. (8) and (9) with

these polynomials evaluated at point t 2=ð2A2Þ.
3. Compute the resulting integral with the use of Barrow’s rule.

For example, if the polynomials of degree 10 for cos x and
degree 11 for sin x are considered, the following approximations
(see Abramowitz and Stegun 1972) are obtained:

x̂ðsÞ � s� s5

2!5ð ffiffiffi
2

p
AÞ4 þ

s9

4!9ð ffiffiffi
2

p
AÞ8 �

s13

6!13ð ffiffiffi
2

p
AÞ12

þ s17

8!17ð ffiffiffi
2

p
AÞ16 �

s21

10!21ð ffiffiffi
2

p
AÞ20 ; s 2 ½0; L�; (10)

ŷðsÞ � s3

2!3A2
� s7

3!7ð ffiffiffi
2

p
AÞ6 þ

s11

5!11ð ffiffiffi
2

p
AÞ10 �

s15

7!15ð ffiffiffi
2

p
AÞ14

þ s19

9!19ð ffiffiffi
2

p
AÞ18 �

s23

11!23ð ffiffiffi
2

p
AÞ22 ; s 2 ½0; L� (11)

It should be noted that the McLaurin series of cos x and sin x are
approximations of these functions in the neighborhood of zero, so
that these approaches are only good for small values of t 2=ð2A2Þ.
However, the dummy variable t takes values in the interval [0, s]
and, consequently, the previous approaches can present problems for
large values of s. To illustrate this fact, Fig. 2 shows the standard clo-
thoid of parameter A = 17.32 with a dashed line, and the approxima-
tion given by Eqs. (10) and (11) with a solid line. Fig. 2 shows that
the approximation is very good for small values of s, but after a cer-
tainvalue, as expected, it becomesmuch less accurate.

Despite the limitations, it is essential to note that the approaches
in Eqs. (10) and (11) are perfectly valid for their applications in sur-
veying engineering. In effect, as mentioned in Remark 2, the clo-
thoid ending with radius of curvature R corresponds with a parame-
ter A ¼ ffiffiffiffiffiffi

RL
p

. Consequently, the approximations in Eqs. (10)
and (11) are good if s2/(2LR) is not too large, and because of
s 2 ½0; L�, this happens whenever L/(2R) is not too large. The

numerical experiments show that these approximations are good
enough for values of L/(2R) lower than 3. After this value, the clo-
thoid is distorted and stops being useful as transition curve.

AnAlternativeMethod

An alternative way to proceed is to obtain the desired clothoid para-
metrization using a numerical method to solve the problems in
Eqs. (4) and (5). There are many methods that can be used (see, e.g.,
Atkinson et al. 2009), and each one of them leads to a different algo-
rithm. As an example, an algorithm can be obtained with use of the
simple explicit Euler’s method, as follows.

Let L> 0. Choose a natural number N 2 N, define Ds ¼ L=N,
and, for each n ¼ 0; 1;…;N, consider sn ¼ nDs. Euler’s method is
based on the approximations

x0ðsnÞ ¼ xðsnþ1Þ � xðsnÞ
Ds

; y0ðsnÞ ¼ yðsnþ1Þ � yðsnÞ
Ds

Thus, define x0 ¼ x0; y0 ¼ y0, and for all n ¼ 0;…;N � 1
compute

xnþ1 ¼ xn þ Ds cos λ
ðsnÞ2
2A2

þ U0

� �
;

ynþ1 ¼ yn þ Ds sin λ
ðsnÞ2
2A2

þ U0

� � (12)

and accept the approximations xðsnþ1Þ � xnþ1; yðsnþ1Þ � ynþ1.

Remark 3

The method just presented is the same as that obtained if the inte-
grals in Eqs. (6) and (7) are computed using the left rectangles

Fig. 2. Approximations of the clothoid of parameter A = 17.32, for an
arc length L = 60; the solid line was computed with the classical
method, Eqs. (10)–(11), and the dashed line with the alternative
method, Eq. (12)
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formula. Similarly, solving the problems in Eqs. (4) and (5) with the
modified Euler’s method would result in the same algorithm as
computing the integrals in Eqs. (6) and (7) with the trapezoidal rule.
In general, using a numerical method to solve Eqs. (4) and (5) is
equivalent to approximating the integrals in Eqs. (6) and (7) with a
numerical quadrature formula.

Despite its simplicity, the previous algorithm is effective, and if
N is large enough (Ds is small enough), the values of xn and yn

obtained are good approximations of x(sn) and y(sn). In fact, the fol-
lowing error estimates (see Appendix) guarantee the previous
affirmation:

jxn � xðsnÞj � ðDsÞ3nðnþ 1Þ
4A2

;

jyn � yðsnÞj � ðDsÞ3nðnþ 1Þ
4A2

To illustrate the accuracy of both methods (classical and alter-
native), the standard clothoid of parameter A = 17.32 (see Fig. 2)
was computed with both algorithms. Table 1 shows the coordi-
nates of some points obtained by both methods, the differences
between them, and the error estimate for the alternative method.
Table 1 shows that the error estimate was always small (the alter-
native method had good accuracy). For small values of s, both
methods gave similar points, but for large values of s, the differ-
ences were much larger than the error estimate, showing the poor
performance of the classical method for large values of s (which
is also reflected in Fig. 2). The good performance of the alterna-
tive method is illustrated in Fig. 3, which shows the approxima-
tions of the two clothoids of parameter A = 20 that link at point
(x0, y0) = (1,2) with the straight line of slope given by
U0 ¼ p=8. Unlike with the result obtained with the use of the
method described in the previous section, this algorithm directly
computes the needed clothoid (without later translations, rota-
tions, and/or symmetries), and also its behavior is acceptable for
large values of s.

Applications

This section presents three examples in which the clothoid is used
as transition curve. First, the clothoid is used to connect a straight
stretch oriented (given by a free vector v) with a particular point in a
given oriented circle. Second, it is used to design the layout of a
road, with known principal directions (intersecting lines) and the
permitted minimum radius of curvature. Finally, by combining the
previous applications, the clothoid is applied to the transition
between two oriented circles.

Connecting an Oriented Straight Stretch with an Arc of
an Oriented Circle

Consider a straight stretch whose direction and sense are deter-
mined by a known vector v (see Fig. 4). The aim is to connect with a
point F = (xF, yF) of a circle centered on C = (xC, yC), to be traveled
with an orientation given by the indicator l C (λC ¼ �1 clockwise,
λC ¼ 1 counterclockwise). The aim is to obtain the shortest clothoid
providing such connection. The following observations can be
made:
1. Obviously, the sign of the clothoid (l ) is determined by the

circle orientation, such that λ ¼ λC.
2. The end point of the clothoid must be linked to point F. To

ensure that (as already proposed in Remark 1), in Eqs. (4)
and (5), the initial conditions must be replaced with the final
terms conditions

Table 1. Comparison of Classical Method and Alternative Method for Computing a Standard Clothoid of Parameter A = 17.32

Alternative Classical Differences
Error

estimate

s ¼ sn xn yn x̂ðsnÞ ŷðsnÞ jxn � x̂ðsnÞj jyn � ŷðsnÞj Dsð Þ3nðnþ1Þ
4A2

0 0 0 0 0 0 0 0
15 14.7908 1.8541 14.7904 1.8563 0.0004 0.0022 0.0023
30 23.9233 12.7493 23.9177 12.7553 0.0056 0.0060 0.0090
45 14.6790 21.7373 14.6594 21.7340 0.0196 0.0033 0.0203
55 10.1555 14.0968 9.0509 13.6903 1.1046 0.4065 0.0303
60 13.6087 10.7421 4.3401 6.7009 9.2685 4.0411 0.0360

Fig. 3. Approximations of the two clothoids of parameter A = 20 that
link at point (x0, y0) = (1,2) with the straight line of slope given by
f 0 ¼ p=8; the solid line corresponds with λ ¼ 1 and the dashed line
with λ ¼ �1

© ASCE 04016005-4 J. Surv. Eng.
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xðLÞ ¼ xF; yðLÞ ¼ yF

3. When the clothoid is linkedwith the circle at pointF, both curves
must have the same slope and the same radius of curvature. This
property determines the length of the clothoid, as follows:
a. First, the radius of curvature at the link point is computed as

the norm of the vector CF ¼ OF�OC. Thus

CF ¼ ðxF � xC; yF � yCÞ

and

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxF � xCÞ2 þ ðyF � yCÞ2

q

b. From vector CF, and taking into account the orientation of
the circle, the tangent vector at point F is computed, which
is given by

vT ¼ λCðyC � yF; xF � xCÞ

c. The angles of vectors v and vT are denoted by U0 2 ½0; 2pÞ
anda 2 ½0; 2pÞ, respectively,withOXþ (see Fig. 4).

d. For the clothoid and circle to have the same slope at the link
point, it must be verified that UðLÞ ¼ a. Then, using Eq. (3)
and taking into account that A ¼ ffiffiffiffiffiffi

RL
p

, gives

λ
L
2R

þ U0 ¼ a (13)

Denoting the angle that must be rotated (rotation angle) by
t 2 ½0; 2pÞ gives

t ¼ λða� U0Þ if λða� U0Þ � 0;
2p þ λða� U0Þ if λða� U0Þ < 0

�

and, from Eq. (13), L ¼ 2Rt is obtained.
Taking these calculations into account, the clothoid is now com-
pletely determined; the end point, the minimum radius R, its length

L (and consequently its parameter A ¼ ffiffiffiffiffiffi
RL

p
), and the values of l

andU0 are already known. The alternative method described in pre-
vious section gives the clothoid as follows:

Define xN = xF, y
N = yF; for all n ¼ N � 1;…; 0 compute

xn ¼ xnþ1 � Ds cos λ
ðsnÞ2
2A2

þ U0

� �
;

yn ¼ ynþ1 � Ds sin λ
ðsnÞ2
2A2

þ U0

� � (14)

and approach rðsnÞ ¼ ðxðsnÞ; yðsnÞÞ � ðxn; ynÞ.
As an example, Fig. 4 shows the clothoid connecting a straight

stretch, with direction and sense given by v ¼ ð cos ð15p=8Þ;
sin ð15p=8ÞÞ, with the point F = (3,1) of the circle centered on C =
(1,1) and clockwise oriented. As indicated earlier, it should be noted
that with these data the clothoid is uniquely determined. The straight
line of linkage (the line linking with the clothoid) must not be a data
point, but it is obtained, a posteriori, from the director vector v, once
the initial point of the clothoid, rð0Þ � ðx0; y0Þ, is computed.

Connecting Two Oriented Straight Stretches

Suppose that onewants to connect two straight stretches intersecting
at a point V. To set directions (and senses), one should assume two
known points, P1 and P2 (see Fig. 5). The aim is to connect the half-
line from P1 to V (r1) with the other one from V to P2 (r2). Once the
minimum radius of curvature R that can have the road in this stretch
is known, the aim is to find two clothoids (one that begins tangent to
r1, with the sense of vector P1V ¼ OV�OP1, and another that
begins tangent to r2, with the sense of vector P2V ¼ OV�OP2).
These clothoids must be connected by an arc of a circle of radius R
and given angle v � 0 (see Fig. 5). Next, the algorithm to compute
these clothoids is determined, and thereby the layout of the road is
designed (hereafter, the superscript 1 refers the clothoid that departs
from r1, and 2 refers the one that departs from r2; matching parame-
ters in both clothoids donot carry a superscript), as follows:
1. From points P1, P2 and V, compute the following:

a. The angle U1
0 2 ð0; 2pÞ between P1V and OXþ;

C

vT v

F

65 7 8

(hm)

(hm)

Fig. 4. Clothoid connecting a straight stretch, with direction and sense given by v ¼ cos 15p=8; sin 15p=8ð Þ, with the point F = (3,1) of the circle
centered on C = (1,1) and clockwise oriented

© ASCE 04016005-5 J. Surv. Eng.

 J. Surv. Eng., 04016005 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

id
ad

 D
e 

Se
vi

lla
 o

n 
02

/1
5/

16
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



b. The angle U2
0 2 ð0; 2pÞ between P2V and OXþ;

c. The angle b 2 ð0;pÞ between the two straight lines; and
d. The signs of clothoids λ1 and λ2 (obviously λ2 ¼ �λ1).

2. From angle b , compute the angle t 2 ð0;p=2Þ (the angle that
forms the tangent vector to the curve at point F1 with the vector
P1V). Fig. 5 shows that t þ v=2 is the complementary of
b =2, and thus

t ¼ p � ðv þ b Þ
2

3. From radius R and angle t (Fig. 5 shows that t ¼ a1 � U1
0 is

the rotation angle), compute the length of the clothoids. As
given in the previous example, L ¼ 2Rt , and the parameter of
the clothoids is A ¼ ffiffiffiffiffiffi

RL
p

.
4. From the parameter A of the clothoids, compute the points of

tangency at r1 and r2 (points T
1 and T2, respectively), proceed-

ing as follows:
a. Compute the end point (XL, Y L) of the standard clothoid of pa-

rameter A. For example, using the alternative method gives

XL ¼ Ds
XN�1

k¼0

cos
skð Þ2
2A2

 ! !
;

YL ¼ Ds
XN�1

k¼0

sin
skð Þ2
2A2

 ! !

b. From XL and YL, compute the proper distances of the clo-
thoid (see Fig. 5):

distðT1; J1Þ ¼ distðT2; J2Þ ¼ XL;

distðJ1;H1Þ ¼ distðJ2;H2Þ ¼ YL tan t ;

distðH1;VÞ ¼ distðH2;VÞ ¼ Rþ YL
cos t

� �
sin ðv=2Þ
sin ðb =2Þ

� �
;

distðT1;VÞ ¼ distðT2;VÞ ¼ distðT1; J1Þ þ distðJ1;H1Þ
þ distðH1;VÞ:

c. From the previous distances, compute the points of tangency
T1 and T2 given by

OT1 ¼ OV� distðT1;VÞ P1V
jjP1Vjj ;

OT2 ¼ OV� distðT2;VÞ P2V
jjP2Vjj

5. Taking point T1 (respectively T2) as the initial point, use the alter-
native method given by Eq. (12) to compute the clothoid of parame-
ter A, initial angle U1

0 (respectively U2
0), and sign λ1 (respectively

λ2).
The previous algorithm is described for a fixed system of reference and
then can be used to connect several different straight stretches with
curves of different radius. This can be very useful in the design (layout)
of a road. As an example, Fig. 6 shows the path of a road that links
three straight stretches, the first two with a clothoid–clothoid curve of
minimum radius R = 1.5 hm and the next two with a clothoid–circle–
clothoid curve of radius R = 1 hm and angle v ¼ p=8. To use the
algorithm, the straight lines are determined by the following points:
P1 ¼ ð0; 2Þ; V1 ¼ ð1; 1Þ; P2 ¼ V2 ¼ ð15;�1Þ, andP3 = (12,3).

Connecting Two Oriented Circles

Combining previous applications allows for the easy connection of
two oriented circles. In this case, consider two circles centered on
C1 = (xC1, yC1) and C2 = (xC2, yC2), to be traveled with orientations
given, respectively, by indicators λC1 and λC2. The aim is to connect
a point on the first circle F1 = (xF1, yF1) with another point on the
second circle F2 = (xF2, yF2), with the use of a transition curve that
combines the clothoids (possibly connected by straight stretches
and/or arc circles). The process is as follows:
• Step 1: Choose two straight directions (angles U1

0; U
2
0 2

½0; 2pÞ) determining the slope of the clothoids at the initial
points (Fig. 7). Choose the minimum radius permitted, R> 0,
and the angle v � 0 determining the arc circle used to combine
the clothoids (obviously, ifv = 0, the arc circle is not used). All
of these parameters should be chosen by the engineers according
to their own preferences or needs (e.g., to avoid obstacles, mini-
mize the road length,maximize safety).

• Step 2: As described previously, compute the clothoids con-
necting the straight stretches with slopes given by U1

0 and U2
0,

with the oriented circles at points F1 and F2.
• Step 3: As described previously, compute the transition curve

(clothoid–circle–clothoid or clothoid–clothoid) connecting the
twooriented straight stretches completely determined in Step 2.
As an example, Fig. 7 shows the transition curve obtained with the

previous method to connect, at points F1 = (–4,3) and F2 = (3,1), the
circles centered, respectively, in C1 = (–3,3) and C2 = (1,1). Assume
that the circles have opposite orientations (λC1 ¼ 1; λC2 ¼ �1), and
chooseU1

0 ¼ 9=8p ; U2
0 ¼ 15=8p ; R ¼ 1 hm,v = 0.

Note that with U2
0 ¼ U1

0 þ p , the previous method can be used to
connect two circles covered along the same direction (egg-shaped tran-
sition), and also covered along the opposite direction (reversing circular
curves) (the same sign of λC1 and λC2 corresponds to reversing circular
curves, and the opposite to egg-shaped transition). Fig. 8 shows both
connections for two circles with radii 1 hm and 2.1 hm. In this example,
U1

0 ¼ 7=8p was used for the egg-shaped transition [Fig. 8(a)] and
U1

0 ¼ 11=8p for the reversing circular curves [Fig. 8(b)].

C

F1

F 2

T 1
J 1
H 1 V

T 2

J 2

H 2

P2

P1

r2

r1

XL

YL

Fig. 5. Scheme of the curve clothoid–circle–clothoid, used to connect
two straight stretches
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Conclusions

This paper compared two different methods for computing clo-
thoids: a classical method based on the use of explicit formulas
obtained from Taylor expansions, and an alternative method based
on the numerical solution of the initial value problems appearing in

their initial parametrization. This second method does not use com-
plex formulas, and therefore it is conceptually very simple and easy
to apply. It also provides good approximations, even when the clas-
sical method fails (when the ratio between length and radius of cur-
vature is large), and needs no rotations, translations, or subsequent
symmetries. It can be easily included in any model (computer

(hm)

( )hm

Fig. 6. Layout of a road connecting three straight stretches determined by the points P1 = (0,2),V1 = (1,1), P2 = V2 = (15,−1), and P3 = (12,3)

-5 -1 3
-1

1

3

5

7
( )hm

(hm)

Fig. 7. Transition curve connecting two given points of two oriented circles
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application) for horizontal road design, and thus it can be a useful
tool for optimizing the horizontal alignment of roads (see Mondal
et al. 2015).

Appendix. Error Estimates

This appendix details the proof of the following result, which gives
useful error estimates for the alternative method.

Theorem 1

For all n ¼ 0; 1;…, the approximations given by Eq. (12) verify

jxn � xðsnÞj � ðDsÞ3nðnþ 1Þ
4A2

; (15a)

jyn � yðsnÞj � ðDsÞ3nðnþ 1Þ
4A2

(15b)

and consequently

jxn � xðsnÞj � L
4R

Dsþ 1
4R

ðDsÞ2; (16a)

jyn � yðsnÞj � L
4R

Dsþ 1
4R

ðDsÞ2 (16b)

This result can be proved with the following error estimate for
the left rectangles formula (see Atkinson et al. 2009).

Lemma 1

If f(x) is a continuously differentiable function in [a, b], then

����
ðb
a
f ðxÞdx� f ðaÞðb� aÞ

���� � M
ðb� aÞ2

2

whereM ¼ maxx2½a;b�jf 0ðxÞj.
With a direct application of this lemma, the following result is

obtained.

Corollary 1

����
ðskþ1

sk
cos λ

t2

2A2
þ U0

� �
dt � Ds cos λ

ðskÞ2
2A2

þ U0

� �����
� ðk þ 1ÞðDsÞ3

2A2
; (17a)

����
ðskþ1

sk
sin λ

t2

2A2
þ U0

� �
dt � Ds sin λ

ðskÞ2
2A2

þ U0

� �����
� ðk þ 1ÞðDsÞ3

2A2
(17b)

Proof
Taking f ðtÞ ¼ cos

�
λðt2=2A2Þ þ U0

�
in ½sk; skþ1�, results in

jf 0ðtÞ j � t=A2, and consequently

M ¼ maxt2½sk ;skþ1�jf 0ðtÞj �
skþ1

A2
¼ ðk þ 1ÞDs

A2
:

The inequality in Eq. (17a) is nowobtained as a direct application
of theprevious lemma, andEq. (17b) is obtained in a similarway.

Now, Theorem 1 can be proved.

Proof of Theorem 1
Eqs. (15a) and (16a) are obtained first, and the inequalities in Eqs.
(15b) and (16b) can be obtained in a similar way.

-8 -2 4
-4

0

2

8

-4 0 4
-1

3

7

(hm)( )hm( )hm

( )hm( )hm

(a) (b)

Fig. 8. (a) Egg-shaped transition; (b) transition between two reversing circular curves
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The first equality of Eq. (12) is equivalent to

xnþ1 ¼ x0 þ
Xn
k¼0

Ds cos λ
ðskÞ2
2A2

þ U0

� �
(18)

Eqs. (6) and (8) result in

jxn � xðsnÞj ¼
����Xn�1

k¼0

Ds cos λ
ðskÞ2
2A2

þ U0

� �

�
ðsn
0

cos λ
t 2

2A2
þ U0

� �
dt

����
Obviously

ðsn
0

cos λ
t 2

2A2
þ U0

� �
dt ¼

Xn�1

k¼0

ðskþ1

sk
cos λ

t2

2A2
þ U0

� �
dt

Thus, Eq. (17a) gives

jxn � xðsnÞj �
Xn�1

k¼0

����
ðskþ1

sk
cos λ

t 2

2A2
þ U0

� �
dt

� Ds cos λ
ðskÞ2
2A2

þ U0

� �����

�
Xn�1

k¼0

ðk þ 1ÞðDsÞ3
2A2

¼ ðDsÞ3
2A2

Xn
k¼1

k ¼ ðDsÞ3nðnþ 1Þ
4A2

Finally, taking into account that Ds ¼ L=N; A ¼ ffiffiffiffiffiffi
RL

p
and

n � N, the result is

jxn � xðsnÞj � ðDsÞ3NðN þ 1Þ
4RL

¼ ðDsÞ2
4R

L
Ds

þ 1

� �

¼ L
4R

Dsþ 1
4R

ðDsÞ2

Acknowledgments

The authors thank the anonymous reviewers for their helpful
comments and Associate Professor Jaime Rodríguez Pereña for

his suggestions. The first author also thanks the support given by
Project MTM2012-30842 of M.E.C. (Spain) and FEDER.

References

Abramowitz, M., and Stegun, I. (1972).Handbook of mathematical functions:
With formulas, graphs, andmathematical tables, Dover, NewYork.

Atkinson, K., Han, W., and Stewart, D. (2009). Numerical solution of ordi-
nary differential equations, JohnWiley& Sons, Inc., Hoboken, NJ.

Baass, K. (1984). “Use of clothoid templates in highway design.” Transp.
Forum, 1(3), 47–52.

Baykal, O., Tari, E., Ços�kun, Z., and S�ahin, M. (1997). “New transition
curve joining two straight lines.” J. Transp. Eng., 10.1061/(ASCE)0733
-947X(1997)123:5(337), 337–345.

Bosurgi, G., and D’Andrea, A. (2012). “A polynomial parametric curve
(PPC-CURVE) for the design of horizontal geometry of highways.”
Comput.-Aided Civ. Infrastruct. Eng., 27(4), 304–312.

Dong, H., Easa, S. M., and Li, J. (2007). “Approximate extraction of spi-
ralled horizontal curves from satellite imagery.” J. Surv. Eng., 10.1061
/(ASCE)0733-9453(2007)133:1(36), 36–40.

Easa, S. M., and Hassan, Y. (2000a). “Development of transitioned vertical
curve. I: Properties.” Transp. Res., 34(6), 481–496.

Easa, S. M., and Hassan, Y. (2000b). “Development of transitioned vertical
curve. II: Sight distance.” Transp. Res., 34(7), 565–584.

Eliou, N., and Kaliabetsos, G. (2014). “A new, simple and accurate transi-
tion curve type, for use in road and railway alignment design.” Eur.
Trans. Res. Rev., 6(2), 171–179.

Kobry�n, A. (1993). “General mathematical transition curves for alignment
between two rectilinear road sections.” Zeitschrift fur Vermessungswesen,
5, 227–242.

Kobry�n, A. (2011). “Polynomial solutions of transition curves.” J. Surv.
Eng., 10.1061/(ASCE)SU.1943-5428.0000044, 71–80.

Kobry�n, A. (2014). “New solutions for general transition curves.” J. Surv.
Eng., 10.1061/(ASCE)SU.1943-5428.0000113, 12–21.

Kobry�n, A. (2015). “Vertical arcs design using polynomial transition
curves.”KSCE J. Civ. Eng., 1–9.

Korkut, L., Vlah, D., Žubrini�c, D., and Županovi�c, V. (2008). “Generalized
Fresnel integrals and fractal properties of related spirals.” Appl. Math.
Comput., 206(1), 236–244.

Levien, R. (2008). “The Euler spiral: A mathematical history.” Technical
Rep. UCB/EECS-2008, Vol. 111, EECS Dept., Univ. of California,
Berkeley, CA.

Mondal, S., Lucet, Y., andHare,W. (2015). “Optimizing horizontal alignment
of roads in a specified corridor.”Comp. Oper. Res., 64(C), 130–138.

Narayan, S. (2014). “Approximating cornu spirals by arc splines.” J.
Comput. Appl. Math., 256, 789–804.

Tari, E., and Baykal, O. (2005). “A new transition curve with enhanced
properties.”Can. J. Civ. Eng., 32(5), 913–923.

© ASCE 04016005-9 J. Surv. Eng.

 J. Surv. Eng., 04016005 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

id
ad

 D
e 

Se
vi

lla
 o

n 
02

/1
5/

16
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

http://dx.doi.org/10.1061/(ASCE)0733-947X(1997)123:5(337)
http://dx.doi.org/10.1061/(ASCE)0733-947X(1997)123:5(337)
http://dx.doi.org/10.1111/j.1467-8667.2011.00750.x
http://dx.doi.org/10.1061/(ASCE)0733-9453(2007)133:1(36)
http://dx.doi.org/10.1061/(ASCE)0733-9453(2007)133:1(36)
http://dx.doi.org/10.1007/s12544-013-0119-8
http://dx.doi.org/10.1007/s12544-013-0119-8
http://dx.doi.org/10.1061/(ASCE)SU.1943-5428.0000044
http://dx.doi.org/10.1061/(ASCE)SU.1943-5428.0000113
http://dx.doi.org/10.1007/s12205-015-0492-z
http://dx.doi.org/10.1016/j.amc.2008.09.009
http://dx.doi.org/10.1016/j.amc.2008.09.009
http://dx.doi.org/10.1016/j.cor.2015.05.018
http://dx.doi.org/10.1139/l05-051

	http://dx.doi.org/=

