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Different types of nonredundant sampling patterns are shown to guarantee completeness of the basis formed by the
sampled partial derivatives of Zernike polynomials, commonly used to reconstruct the wavefront from its slopes
(wavefront sensing). In the ideal noise-free case, this enables one to recover double the number of modes J than
sampling points I (critical sampling J ¼ 2I). With real data, noise amplification makes the optimal number of modes
lower I < J < 2I. Our computer simulations show that optimized nonredundant sampling provides a significant
improvement of wavefront reconstructions, with the number of modes recovered about 2.5 higher than with
standard sampling patterns. © 2011 Optical Society of America
OCIS codes: 010.7350, 080.1005, 220.1010.

Wavefront sensing is a highly successful method for ob-
taining the wavefront aberration of an optical system
from the measurement of wavefront slopes [1,2] [i.e.,
transverse aberrations ðx0i; y0iÞ] at some array of sampling
points ðρi; θiÞ, i ¼ 1;…I at the pupil plane. The main ap-
plications are atmospheric optics and astronomy [3], the
human eye [4], and optical testing [5]. The measurements
are proportional to the gradient of the wavefront
ðx0i; y0iÞ ¼ f 0=Rpup∇Wðρi; θiÞ; Rpup is the pupil (or wave-
front) radius and f 0 is the focal length of the lens (or
microlens array) of the measuring instrument [5]. To re-
cover the wavefront W , one has to integrate the gradient
using some expansion of W in terms of some derivable
basis functions. For circular pupils, Zernike polynomials
(ZPs) form a complete orthogonal basis (on a circle of
unit radius) so that the wavefront can be represented
as Wðρ; θÞ ¼ P

J
j c

jZjðρ; θÞ, where cj are the coefficients
and Zj are the ZPs. Here, the radial order n and angular
frequency m are merged into a single index j ¼
ðnðnþ 2Þ þmÞ=2 (ANSI Z80.28 standard). We can
substitute the expansion of W for the discrete set of
measurements:

mi ¼ Rpup=f 0
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or in matrix-vector notation:

m ¼
�
Z0

X

Z0
Y

�
c ¼ Dc; ð1Þ

where Z0j
Xi, Z

0j
Yi are the partial derivatives of the jth ZP at

point i. Then, the solution for the wavefront coefficients
is c ¼ D−1m. There are two possibilities to invert D. The
usual strategy is to apply a strong oversampling, J ≪ I,
and then compute the least-squares solution (i.e., the
pseudoinverse) so that the coefficients are estimated
as ĉ ¼ ðDTDÞ−1DTm. The opposite strategy would be to
apply critical sampling, J ¼ 2I, so that D is square, but
then the problem is that D−1 exists only if DetðDÞ ≠ 0
(D nonsingular), which is the condition for completeness.
If that happens, then Eq. (1) can be solved exactly and

the computation is exact and invertible. However, matrix
inversion is numerically unstable, which could have the
undesirable effect of noise amplification. For this reason,
orthogonality is a highly desirable additional condition,
which guarantees a trivial computation of the inverse
as matrix transpose. When orthogonality is not feasible,
the condition number (CN) should be as close as possible
to 1 to avoid excessive noise amplification. The problem
is that sampled ZPs and sampled ZP derivatives are
neither complete nor orthogonal for the usual sampling
patterns (square, hexagonal, polar, etc. [6]). Previous
studies [7] showed that some inhomogeneous sampling
patterns (nodal points of Albrecht cubature) can guaran-
tee orthogonality in the wavefront reconstruction. Re-
cently [8], we found different types of nonredundant
sampling patterns (where θi ≠ θk and ρi ≠ ρk ∀i, k) that
guarantee completeness of the discrete ZP basis. In this
Letter, the goal was to study whether those nonredun-
dant patterns also guarantee completeness for the ZP de-
rivatives so that DetðDÞ ≠ 0. This means that, ideally, it
would be possible to construct an invertible square ma-
trix D by applying critical sampling (i.e., J ¼ 2I). This
would permit us to pass from the wavefront coefficients
to the slope measurements m ¼ Dc and vice versa
c ¼ D−1m. This implies important benefits: attaining
the critical sampling J ¼ 2I limit means to retrieve dou-
ble the number of coefficients (Zernike modes) than sam-
pling points, exact recovery of the measurements and
exact solution for the coefficients (in the ideal case of
zero noise). As far as we know, critical sampling, or even
the case J > I was not attempted before, basically
because, with standard sampling grids, DetðDÞ ¼ 0 and
RankðDÞ < I.

We compared five different sampling patterns with a
fixed number of I ¼ 91 points (n ¼ 12): standard hexago-
nal (H), perturbed hexagonal (PH), random (R), and two
types of spirals (S1 and S2). The details of how to build
these nonredundant patterns are given in [8]. The P is
obtained by adding a small random shift to the co-
ordinates of the sampling points of the order of 10−3Rpup.
Random sampling was proposed previously [9]. In both
spirals, the sampling of the angular coordinate is
regular and homogeneous θi ¼ θmax=ðI − 1Þi; for S1,
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ρi ¼ ρmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θi=θmax

p
, which provides approximately

homogenous density of samples across the pupil,
whereas, for S2, ρi ¼ ρmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θi=θmax

4
p

and, hence, the den-
sity increases toward the periphery. These sampling pat-
terns are compared in Fig. 1. The reason for using the S2
sampling pattern is that it provides increasing density to-
ward the periphery, in a similar fashion as other sampling
patterns proposed to guarantee orthogonality of discrete
ZPs [7]. Nevertheless, we compared different spirals
where ρwas proportional to θ, θ1=2, θ1=3, θ1=4, etc., finding
that 1=4 provided the best CN to invert D.
The first crucial result is that the same sampling pat-

terns, which guarantee completeness of the ZPs [8],
namely, R, PH, S1, and S2 also guarantee completeness:
the two sampled partial derivatives of ZPs form a com-
plete basis for the set of measurements m. For the parti-
cular case of I ¼ 91 and critical sampling, then J ¼ 182
and D is a 182 × 182 square matrix. The rank was max-
imum 182 for all nonredundant samplings, but it was
much lower 89 < I for the hexagonal (redundant) one.
Therefore, it is possible to perform wavefront sensing
with critical sampling to recover 2J Zernike modes of
the wavefront.
In the ideal noise-free case, the reconstruction will be

exact, but the lack of orthogonality could affect the
matrix inversion, which could amplify the noise of real
measurements. We studied the problem of potential
noise amplification in two ways. First, we obtained the
singular value decomposition of matrix D as a metric
to predict the noise amplification. In particular, the CN
that is the ratio between the maximum and minimum sin-
gular values is a good metric for the numerical instability
associated with the matrix inversion and also gives a
rough estimation of the expected noise amplification.
The optimum value is 1, but, for large nondiagonal
matrices, this usually requires orthogonality. The CNs ob-
tained for the square 182 × 182matrices improve progres-
sively: ∞ for H, 4:3 × 107 for PH, 1:6 × 107 for S1, 4 × 106

for R, and 1:7105 for S2. To have a more realistic estima-
tion of the performance, including the effects of noise
amplification, we conducted a series of computer simu-
lations. The coefficients (up to 182) of a wavefront were
generated randomly according to the statistics (mean
and variance) found in a population of human eyes [10].
Coefficients for higher orders were assumed to be zero,
which is likely to happen in normal eyes. In this way, we
consider only the effect of noise, while we avoid possible
cross coupling and aliasing [11] owing to potential spec-
tral overlapping. This synthetic wavefront has an rms
value of 0:54 μm (∼1λ). For each condition, 30 different
measurements were simulated using the expression
mk ¼ Dcþ nk for the kth realization, where nk is (Gaus-
sian zero mean) random noise. Then, we computed the
mean and standard deviation (error bars in figures). The
noise variance was adjusted to simulate different levels
of signal-to-noise ratio (SNR) from 1 to ∞ (zero noise).
The results for the different sampling patterns are plotted
in Fig. 2 for the case of SNR ¼ 30, computed as the ratio
between the rms values of measurements and noise, re-
spectively. The SNR is within the range of typical values
in ocular aberrometers [12].

The vertical axis corresponds to the rms difference be-
tween the original (ideal) wavefront and that recon-
structed from the noisy measurements. The horizontal
axis represents the number of modes J considered in
the matrix D, which means that, for the reconstructions,
the expression c ¼ D−1m applies only to the last point
J ¼ 182. For the other points (J < 182), the matrix is
not square, 182 × J, and then the coefficients were com-
puted using the pseudoinverse ĉ ¼ ðDTDÞ−1DTm. In fact,
we applied the QR factorization (where Q is orthogonal
and R is triangular) to the pseudoinverse to improve its
CN (typically by a factor of 2.) As we can see, all the sam-
pling patterns show a similar performance for J ≤ 62, but,
for J > 62, the noise amplification increases rapidly for
the redundant H pattern. For the nonredundant sampling
patterns (R, PH, S1, and S2), the effect of noise amplifi-
cation becomes patent for higher values of J; as J in-
creases, S2 shows the best behavior. For this sampling
pattern, and SNR ¼ 30, the optimal performance is
obtained for J ≈ 122, significantly greater than I ¼ 91.

Fig. 1. (Color online) Sampling patterns PH, R, S1, and S2 with
I ¼ 91.

Fig. 2. (Color online) Root-mean-square error of the recon-
structed wavefront for different sampling patterns.
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Figure 3 compares the results for SNR ¼ 1, 10, 30, 100,
and ∞ (noise-free case) for the best sampling pattern
S2. As expected, for SNR ¼ ∞, the wavefront reconstruc-
tion is perfect for J ¼ 2I; otherwise, noise amplification
is present and very clear for J > 140. Beyond that point,
all curves (except ∞) are roughly parallel. The main dif-
ference is the minimum value, which is clearly dependent
on the SNR of the measurements. The position of the ab-
solute minimum moves to the right as the SNR increases,
but curves (especially those corresponding to realistic
values of SNR, 10 or 30) show a rather flat valley, indi-
cating that the optimal value of the number of modes
J is not critical.
In summary, standard (redundant) patterns, such as H,

exhibit a more limited performance when compared to
the nonredundant ones. The absolute limit for the num-
ber of modes reconstructed in the ideal case (SNR ¼ ∞)
is equal to RankðDÞ, which is 86 < I for H, whereas all
proposed nonredundant sampling patterns give perfect
reconstruction for critical sampling (J ¼ 2I). For the
case of SNR ¼ 30, the best reconstruction provided by
the H pattern yields a 0:29 μm rms error for a number of
modes J ¼ 50 (55% of sampling points). For this SNR, the
best reconstruction is obtained for the spiral S2, with a
0:145 μm rms error for J ¼ 122 (134% of sampling
points). That optimal value of J corresponds to a trade
off between spectral subsampling (increase of rms error
when J decreases) and noise amplification (when J in-
creases). These computer simulations are limited to a
fixed number of sampling points (I ¼ 91), but the conclu-
sions are more general. For a lower number of sampling
points, the CN (associated to the inversion of large ma-
trices) improves [8], so the expected noise amplification
is lower. For very large values of I (sampling points),

other basis functions (such as Fourier series) could be
more appropriate than ZPs in practice.

To our knowledge, this is the first empirical demon-
stration of wavefront reconstruction with critical sam-
pling. This permits the invertible computation of the
measurements m from the wavefront W and vice versa,
which could be important in different applications, such
as optimization in optical design, inverse problems in op-
tics, iterative computations, etc. In the presence of noise
(wavefront sensing), nonredundant patterns enable one
to recover more modes than sampling points (J > I) and
hence an improved wavefront reconstruction. Two con-
ditions are necessary for that: the sampling pattern must
be nonredundant to guarantee completeness of the basis
of sampled ZPs, and, to optimize the CN of D, the density
of sampling must increase toward the periphery, which is
consistent with sampling grids proposed previously [7]
to guarantee orthogonality. Regarding practical applica-
tions, these inhomogeneous spiral sampling patterns are
difficult to implement in conventional monolithic micro-
lens arrays used in Hartmann–Shack sensors. However,
highly flexible and reconfigurable (almost in real time)
sampling grids can be easily implemented using laser ray
tracing [5] or liquid-crystal spatial light modulators [13].
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Fig. 3. (Color online) Root-mean-square error of the recon-
structed wavefront for spiral S2 sampling and for different
SNRs of the input measurements.
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