Unidades bicíclicas y descomposición de Wedderburn de anillos de grupo
- Olivieri Palmas, Aurora Alejandra
- Ángel del Río Mateos Director
Universidade de defensa: Universidad de Murcia
Fecha de defensa: 30 de xaneiro de 2003
- José Luis Gómez Pardo Presidente
- Manuel Saorín Castaño Secretario/a
- Capi Corrales Rodrigáñez Vogal
- Eric Jespers Vogal
- Ferran Cedó Vogal
Tipo: Tese
Resumo
En el Capítulo 2 se muestra un contraejemplo al problema abierto de si las unidades bicíclicas del anillo de grupo de coeficientes enteros ZG generan un grupo de libre de torsión. En el Capítulo 3 se proporciona un método, alternativo al método clásico, para encontrar los idempotentes centrales primitivos del algebra de grupo racional QG para G un grupo finito monomial. Este método permite además obtener información de la descomposición de Wedderburm de QG para muchos grupos G entre los que se encuentran los grupos abeliano-por-superresolubles. Los resultados del Capítulo 3 se implementan en el paquete informático wedderga para el Sistema GAP. Los algoritmos de este paquete se explican y justifican en el Capítulo 4.